Advertisement

Structure of Complex Operons

  • Allan Campbell
Part of the Biological Regulation and Development book series (BRD, volume 1)

Abstract

In 1961 and 1965, Jacob and Monod unified and systematized many of the facts then known about genetic regulation in bacteria. Starting with two prototypic examples, the lac operon of Escherichia coli and the bacteriophage lambda (which is more complex, but has many features in common with the lac operon), these authors developed a general scheme for regulation that might have been extendable to all genes of all organisms. This scheme has provided a conceptual nucleus and a source of terminology for almost all subsequent discussions of regulation, even though further experimentation has revealed some facts that could not be directly assimilated into the original framework of this scheme without modification or expansion.

Keywords

Cold Spring Harbor Bacteriophage Lambda Internal Promoter Lysogenic Bacterium Tryptophan Operon 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Achord, D., and Kennell, D., 1974, Metabolism of messenger RNA from the gal operon of Escherichia coli, J. Mol. Biol. 90: 581.PubMedCrossRefGoogle Scholar
  2. Adhya, S., Gottesman, M., and Court, D., 1977, Independence of N and tof functions of bacteriophage X, J. Mol. Biol. 112: 657.PubMedCrossRefGoogle Scholar
  3. Adhya, S., Gottesman, M., and de Crombrugghe, B., 1974, Release of polarity in Escherichia coli by gene N of phage X: Termination and antitermination of transcription, Proc. Natl. Acad. Sci. U.S.A. 71: 2534.PubMedCrossRefGoogle Scholar
  4. Artz, S. W., and Broach, J. R., 1975, Histidine regulation in Salmonella typhimurium; An activatorattenuator model of gene regulation, Proc. Natl. Acad. Sci. U.S.A. 72: 3453.PubMedCrossRefGoogle Scholar
  5. Atkins, J. F., and Loper, J. C., 1970, Transcription initiation in the histidine operon of Salmonella typhimurium, Proc. Natl. Acad. Sci. U.S.A. 65: 925.PubMedCrossRefGoogle Scholar
  6. Bachman, B. J., Low, K. B., and Taylor, A. C., 1976, Recalibrated linkage map of Escherichia coli K-12, Bacteriol. Rev. 40: 116.Google Scholar
  7. Barrell, B. G., Air, G. M., and Hutchinson, C. A., 1976, Overlapping genes in bacteriophage 4X174, Nature 264: 34.PubMedCrossRefGoogle Scholar
  8. Barrett, K., Barclay, S., Calendar, T., Lindqvist, B., and Six, E., 1975, Reciprocal trans activation in a two-chromosome system, in: Mechanisms of Virus Disease, ICN-UCLA Symposia on Molecular Biology, Vol. 1 ( W. S. Robinson and C. F. Fox, eds.), pp. 385–401, W. A. Benjamin, Menlo Park, California.Google Scholar
  9. Berget, S. M., Moore, C., and Sharp, P. A., 1976, Spliced segments at the 5’ terminus of adenovirus late mRNA, Proc. Natl. Acad. Sci., U.S.A. 74: 317.Google Scholar
  10. Bertani, L. E., 1970, Split-operon control of a prophage gene, Proc. Natl. Acad. Sci., U.S.A. 65: 331.CrossRefGoogle Scholar
  11. Bertani, L. E., 1971, Stabilization of P2 tandem double lysogens by int mutations in the prophage, Virology 46: 426.PubMedCrossRefGoogle Scholar
  12. Bertrand, K., and Yanofsky, C., 1976, Regulation of transcription termination in the leader region of the tryptophan operon of Escherichia coli involves tryptophan or its metabolic product, J. Mol. Biol. 103: 339.PubMedCrossRefGoogle Scholar
  13. Bertrand, D., Squires, C., and Yanofsky, C., 1976, Transcription termination in vivo in the leader region of the tryptophan operon of Escherichia coli, J. Mol. Biol. 103: 319.PubMedCrossRefGoogle Scholar
  14. Bertrand, K., Korn, L. J., Lee, F., and Yanofsky, C., 1977, The attenuator of the tryptophan operon of Escherichia coli. a. Heterogeneous 3’-OH-termini in vivo. b. Deletion mapping of functions, J. Mol. Biol. 117: 227.PubMedCrossRefGoogle Scholar
  15. Bukhari, A. I., Adhya, S., and Shapiro, J., eds., 1977, DNA Insertion Elements, Plasmids and Episomes, Cold Spring Harbor Lab., Cold Spring Harbor, New York.Google Scholar
  16. Butler, B., and Echols, H., 1970, Regulation of bacteriophage X development by gene N: Properties of a mutation that bypasses N control of late protein synthesis, Virology 40: 212.PubMedCrossRefGoogle Scholar
  17. Buttin, G., Jacob, F., and Monod, J., 1960, Synthèse consititutive de galactokinase consécutive au développement du bactériophage X chez Escherichia coli K12, C. R. Acad. Sci. Paris 250: 2471.Google Scholar
  18. Calvo, J. M., and Fink, G. R., 1971, Regulation of biosynthetic pathways in bacteria and fungi, Annu. Rev. Biochem. 40: 943.CrossRefGoogle Scholar
  19. Campbell, A., 1972, Episomes in evolution, in: Evolution of Genetic Systems (H. H. Smith, ed.), Brookhaven Symp. Biol., Vol. 23, pp. 546–562, Gordon and Breach, London.Google Scholar
  20. Campbell, A., 1976, Significance of constitutive integrase synthesis, Proc. Natl. Acad. Sci. U.S.A. 73: 887.PubMedCrossRefGoogle Scholar
  21. Campbell, A., del Campillo-Campbell, A., and Chang, R., 1972, A mutant of Escherichia coli that requires high concentrations of biotin, Proc. Natl. Acad. Sci. U.S.A. 69: 676.PubMedCrossRefGoogle Scholar
  22. Campbell, A., Heffernan, L., Hu, S.-L., and Szybalski, W., 1977, The integrase promoter of bacteriophage X, in: DNA Insertion Elements, Plasmids and Episomes ( A. I. Bukhari, S. Adhya, and J. Shapiro, eds.), Cold Spring Harbor Lab., Cold Spring Harbor, New York.Google Scholar
  23. Cleary, P. P., Campbell, A., and Chang, R., 1972, Location of promoter and operator sites in the biotin gene cluster of Escherichia coli, Proc. Natl. Acad. Sci. U.S.A. 69: 2219.PubMedCrossRefGoogle Scholar
  24. Contesse, G., Crépin, M., and Gros, F., 1970, Transcription of the lactose operon in E. coli, in: The Lactose Operon (J. R. Beckwith and D. Zipser, eds.), pp. 111–142, Cold Spring Harbor Lab., Cold Spring Harbor, New York.Google Scholar
  25. Contesse, G., Bracone-Mahlie, A., and Gros, F., 1973, Interaction between X or 4)80 prophage and gal operon expression, J. Mol. Biol. 73: 527.PubMedCrossRefGoogle Scholar
  26. Court, D., and Campbell, A., 1972, Gene regulation in N mutants of phage lambda, J. Virol. 9:938. Court, D., and Sato, K., 1969, Studies of novel transducing variants of lambda. Dispensability of genes N and Q, Virology 39: 348.CrossRefGoogle Scholar
  27. Court, D., Adhya, S., Nash, H., and Enquist, L., 1977, The phage X intergration protein (Int) is subject to control by the cIl and cHHI gene products, in: DNA Insertion Elements, Plasmids and Episomes ( A. I. Bukhari, S. Adhya, and J. Shapiro, eds.), Cold Spring Harbor Lab., Cold Spring Harbor, New York.Google Scholar
  28. Crawford, I. P., 1975, Gene rearrangements in the evolution of the tryptophan pathway, Bacteriol. Rev. 39: 87.PubMedGoogle Scholar
  29. Crombrugghe, B., Adhya, S., Gottesman, M., and Pastan, I., 1973, Effect of rho on transcription of bacterial operons, Nature New Biol. 241: 260.PubMedCrossRefGoogle Scholar
  30. Denney, R. M., and Yanofsky, C., 1972, Detection of tryptophan messenger RNA in several bacterial species and examination of the properties of heterologous DNA-RNA hybrids, J. Mol. Biol. 64: 319.PubMedCrossRefGoogle Scholar
  31. Dickson, R. C., Abelson, J., Barnes, W. M., and Reznikoff, W. S., 1975, Genetic regulation: The lac control region, Science 187: 27.PubMedCrossRefGoogle Scholar
  32. Dove, W., 1971, Biological inferences, in: The Bacteriophage Lambda ( A. D. Hershey, ed.), pp. 297–312, Cold Spring Harbor Lab., Cold Spring Harbor, New York.Google Scholar
  33. Echols, H., 1972, Developmental pathways for the temperate phage: Lysis vs. lysogeny, Annu. Rev. Genet. 6: 257.CrossRefGoogle Scholar
  34. Echols, H., Court, D., and Green, L., 1976, On the nature of cis-acting regulatory proteins and genetic organization in bacteriophage: The example of gene Q of bacteriophage X, Genetics 83: 5.PubMedGoogle Scholar
  35. Eisenberg, M. A., 1975, Mode of action of a-dehydrobiotin, a biotin analogue, J. Bacteriol. 123: 248.PubMedGoogle Scholar
  36. Eisenberg, M. A., Mee, B., Prakash, O., and Eisenberg, M. R., 1975, Properties of a-dehydrobiotinresistant mutants of Escherichia coli K-12, J. Bacteriol. 122: 66.Google Scholar
  37. Elseviers, D., Cunin, R., Glandsdorff, N., Baumberg, S., and Ashcraft E., 1972, Control regions within the argECBH gene cluster of Escherichia coli K-12, Mol. Gen. Genet. 117: 349.PubMedGoogle Scholar
  38. Fiers, W., Contreras, R., Duerinck, F., Haegeman, G., Merregaert, J., Minjou, W., Raeymaeker, A., Remant, E., Volchaert, G., and Yselbaert, M., 1975, Bacteriophage MS2 RNA: The complete nucleotide sequence of a viral genome. Secondary structure and biological functions, Abstract Third International Congress on Virology, p. 17.Google Scholar
  39. Francke, B., and Ray, D. S., 1972, Cis-limited action of the gene-A product of bacteriophage çX174 and the essential bacterial site, Proc. Natl. Acad. Sci. U.S.A. 69: 475.PubMedCrossRefGoogle Scholar
  40. Franklin, N., 1971, The N operon of lambda: Extent and regulation as observed in fusions to the tryptophan operon of Escherichia coli, in: The Bacteriophage Lambda ( A. D. Hershey, ed.), pp. 621–638, Cold Spring Harbor Lab., Cold Spring Harbor, New York.Google Scholar
  41. Franklin, N. C., 1974, Altered reading of genetic signals fused to the N operon of bacteriophage X: Genetic evidence for modification of polymerase by the protein product of the N gene, J. Mol. Biol. 89: 33.PubMedCrossRefGoogle Scholar
  42. Friedman, D. I., Jolly, C. A., Mural, R. J., Ponce-Campos, R., and Baumann, M. F., 1976, Growth of X variants with added or altered promoters in N-limiting bacterial mutants. Evidence that an N -recognition site lies in the pR promoter, Virology 71: 61.PubMedCrossRefGoogle Scholar
  43. Galland, P., Cortini, R., and Calef, E., 1975, Control of gene expression in bacteriophage X: Suppression of N mutants by mutations of the antirepressor, Mol. Gen. Genet. 142: 155.PubMedCrossRefGoogle Scholar
  44. Golomb, M., and Chamberlin, M., 1974, A preliminary map of the major transcription units read by T7 RNA polymerase on the T7 and T3 bacteriophage chromosomes, Proc. Natl. Acad. Sci. U.S.A. 71: 760.PubMedCrossRefGoogle Scholar
  45. Guha, A., Saturen, Y., and Szybalski, W., 1971, Divergent orientation of transcription from the biotin locus of Escherichia coli, J. Mol. Biol. 56: 53.PubMedCrossRefGoogle Scholar
  46. Hayes, S., and Szybalski, W., 1973, Control of short leftward transcripts from the immunity and on regions in induced coliphage lambda, Mol. Gen. Genet. 7: 289.Google Scholar
  47. Hershey, A. D., and Dove, W., 1971, Introduction to lambda, in: The Bacteriophage Lambda ( A. D. Hershey, ed.), pp. 3–12, Cold Spring Harbor Laboratories, Cold Spring Harbor, N.Y.Google Scholar
  48. Herskowitz, I., and Signer, E., 1970a, Control of transcription from the r strand of bacteriophage lambda, Cold Spring Harbor Symp. Quant. Biol. 35: 365.CrossRefGoogle Scholar
  49. Herskowitz, I., and Signer, E. R., 1970b, A site essential for expression of all late genes in bacteriophage X, J. Mol. Biol. 47: 545.PubMedCrossRefGoogle Scholar
  50. Hofnung, M., 1974, Divergent operons and the genetic structure of the maltose B region in Escherichia coli K12, Genetics 76: 169.PubMedGoogle Scholar
  51. Honigman, A., Oppenheim, A., Oppenheim, A. B., and Stevens, W. F., 1975, A pleiotropic regulatory mutation in X bacteriophage, Mol. Gen. Genet. 138: 85.PubMedCrossRefGoogle Scholar
  52. Honigman, A., Hu, S.-L., Chase, R., and Szybalski, W., 1976, 4s oop RNA is a leader sequence for the immunity-establishment transcription in coliphage X, Nature 262: 112.Google Scholar
  53. Honigman, A., Hu, S.-L., and Szybalski, W., 1977, Unpublished results quoted by Campbell et al. (1977).Google Scholar
  54. Jackson, E. N., and Yanofsky, C., 1972, Internal promoter of the tryptophan operon of Escherichia coli is located in a structural gene, J. Mol. Biol. 69: 307.PubMedCrossRefGoogle Scholar
  55. Jackson, E. N., and Yanofsky, C., 1973, The region between the operator and the first structural gene of the tryptophan operon of Escherichia coli may have a regulatory function, J. Mol. Biol. 76: 89.PubMedCrossRefGoogle Scholar
  56. Jacob, F., and Monod, J., 1961, Genetic regulatory mechanisms in the synthesis of proteins, J. Mol. Biol. 3: 318.PubMedCrossRefGoogle Scholar
  57. Jacob, F., and Monod, J., 1965, Genetic mapping of the elements of the lactose region in Escherichia coli, Biochem, Biophys, Res. Commun. 18: 513.Google Scholar
  58. Jacoby, C. A., 1972, Control of the argECBH cluster in Escherichia coli, Mol. Gen. Genet. 117: 337.PubMedGoogle Scholar
  59. Kasai, T., 1974, Regulation of the expression of the histidine operon in Salmonella typhimurium, Nature 249: 523.PubMedCrossRefGoogle Scholar
  60. Katzir, N., Oppenheim, A., Belfort, M., and Oppenheim, A. B., 1976, Activation of the lambda int gene by the c77 and c777 gene products, Virology 74: 327.CrossRefGoogle Scholar
  61. Ketner, G., and Campbell, A., 1974, A deletion mutation placing the galactokinase gene of Escherichia coli under control of the biotin promoter, Proc. Natl. Acad. Sci. U.S.A. 71: 2698.PubMedCrossRefGoogle Scholar
  62. Ketner, G., and Campbell, A., 1975, Operator and promoter mutations affecting divergent transcription in the bio gene cluster of Escherichia coli, J. Mol. Biol. 96: 13.PubMedCrossRefGoogle Scholar
  63. Korn, L. W., and Yanofsky, C., 1976, Rho factor mediates transcription termination at the attenuator of the tryptophan operon of Escherichia coli, J. Mol. Biol. 106: 231.PubMedCrossRefGoogle Scholar
  64. Largen, M., and Belser, W., 1973, The apparent conservation of the internal low efficiency promoter of the tryptophan operons of several species of Enterobacteriaceae, Genetics 75: 19.PubMedGoogle Scholar
  65. Levin, B., 1974, Gene Expression-1. Bacterial Genomes, Wiley, New York.Google Scholar
  66. Lindahl, G., 1970, Bacteriophage P2: Replication of the chromosome requires a protein which acts only on the genome which codes for it, Virology 42: 522.PubMedCrossRefGoogle Scholar
  67. Lozeron, H. A., Dahlberg, J. A., and Szybalski, W., 1976, Processing of the major leftward mRNA of coliphage lambda, Virology 71: 262.PubMedCrossRefGoogle Scholar
  68. Luzzati, D., 1970, Regulation of X exonuclease synthesis: Role of the N gene product and X repressor, J. Mol. Biol. 49: 515.PubMedCrossRefGoogle Scholar
  69. Margolin, P., and Bauerle, R. H., 1966, Determinants for regulation and initiation of expression of tryptophan genes, Cold Spring Harbor Symp. Quant. Biol. 31: 311.PubMedCrossRefGoogle Scholar
  70. McDermit, M., Pierce, M., Staley, D., Shimaji, M., Shaw, R., and Wulff, D., 1976, Mutations masking the lambda cin-1 mutation, Genetics 82: 417.PubMedGoogle Scholar
  71. Monod, J., and Jacob, F., 1961, General conclusions: Teleonomic mechanisms in cellular metabolism, growth and differentiation, Cold Spring Harbor Symp. Quant. Biol. 26: 389.PubMedCrossRefGoogle Scholar
  72. Musso, R., Di Lauro, R., Rosenberg, M., and de Crombrugghe, B., 1977, Nucleotide sequence of the operator–promoter region of the galactose operon of Escherichia coli, Proc. Natl. Acad. Sei. U.S.A. 74: 106.CrossRefGoogle Scholar
  73. Nakamura, Y., and Yura, T., 1976, Induction of sigma factor synthesis in Escherichia coli by the N gene product of bacteriophage lambda, Proc. Natl. Acad. Sci. U.S.A. 73: 4405.PubMedCrossRefGoogle Scholar
  74. Nash, H. A., 1975, Integrative recombination of bacteriophage lambda DNA in vitro, Proc. Natl. Acad. Sci. U.S.A. 72: 1072.PubMedCrossRefGoogle Scholar
  75. Pachl, C. A., and Young, E. G., 1976, Detection of polycistronic and overlapping bacteriophage T7 late transcripts by in vitro translation. Proc. Natl. Acad. Sci. U.S.A. 73: 312.PubMedCrossRefGoogle Scholar
  76. Pai, C. H., 1972, Mutant of Escherichia coli with derepressed levels of the biotin biosynthetic enzymes, J. Bacteriol. 112: 1280.PubMedGoogle Scholar
  77. Petit-Koskas, E., and Contesse, G., 1976, Stimulation in trans of synthesis of E. coli gal operon enzymes by lambdoid phages during low catabolite repression, Mol. Gen. Genet. 143: 203.PubMedCrossRefGoogle Scholar
  78. Pribnow, D., 1975, Nucleotide sequence of an RNA polymerase binding site at an early T7 promoter, Proc. Natl. Acad. Sci. U.S.A. 72: 784.PubMedCrossRefGoogle Scholar
  79. Ptashne, M., 1971, Repressor and its action, in: The Bacteriophage Lambda ( A. D. Hershey, ed.), pp. 221–238, Cold Spring Harbor Lab., Cold Spring Harbor, New York.Google Scholar
  80. Ptashne, M., Bachman, K., Humazun, M. Z., Jeffrey, A., Maurer, R., Meyer, B., and Sauer, R. T., 1976, Autoregulation and function of a repressor in bacteriophage lambda, Science 194: 156.PubMedCrossRefGoogle Scholar
  81. Richardson, J. P., Grimley, C., and Lowery, C., 1975, Transcription termination factor rho activity is altered in Escherichia coli with suA gene mutations, Proc. Natl. Acad. Sci. U.S.A. 72: 1725.PubMedCrossRefGoogle Scholar
  82. Riggs, A. D., Bourgeois, S., and Cohn, M., 1970, The lac repressor–operator interaction. III. Kinetic studies, J. Mol. Biol. 53: 401.PubMedCrossRefGoogle Scholar
  83. Roberts, J. W., 1970, The p factor: Termination and anti-termination in lambd2, Cold Spring Harbor Symp. Quant. Biol. 35: 121.CrossRefGoogle Scholar
  84. Roberts, J. W., 1975, Transcription termination and late control in phage lambda, Proc. Natl. Acad. Sci. U.S.A. 72: 2300.CrossRefGoogle Scholar
  85. Shimada, K., and Campbell, A., 1974, Int-constitutive mutants of bacteriophage lambda, Proc. Natl. Acad. Sci. U.S.A. 71: 237.PubMedCrossRefGoogle Scholar
  86. Shimada, K., Weisberg, R., and Gottesman, M. E., 1973, Prophage lambda at unusual chromosomal locations. II. Mutations induced by bacteriophage lambda in Escherichia cob K12, J. Mol. Biol. 80: 297.PubMedCrossRefGoogle Scholar
  87. Smith, G. R., and Magasanik, B., 1971, Nature and self-regulated synthesis of the repressor of the hut operons in Salmonella typhimurium, Proc. Natl. Acad. Sci. U.S.A. 68: 1493.PubMedCrossRefGoogle Scholar
  88. Spiegelman, W. G., Reichardt, L. F., Yaniv, M., Heineman, S. F., Kaiser, A. D., and Eisen, H., 1972, Bidirectional transcription and the regulation of phage X repressor synthesis, Proc. Natl. Acad. Sci. U.S.A. 69: 3156.PubMedCrossRefGoogle Scholar
  89. Szybalski, W., Bßvre, K., Fiandt, M., Hayes, S., Hradecna, Z., Kumar, S., Lozeron, H. A., Nijkamp, H.J. J., and Stevens, W. F., 1970, Transcriptional units and their controls in Escherichia coli phage X: Operons and scriptons, Cold Spring Harbor Symp. Quant. Biol. 35: 341.CrossRefGoogle Scholar
  90. Thomas, R., 1970, Control of development in temperate bacteriophage. III. Which prophage genes are and which are not transactivable in the presence of immunity? J. Mol. Biol. 49: 393.PubMedCrossRefGoogle Scholar
  91. Vrancic, A., and Guha, A., 1973, Evidence of two operators in the biotin locus of Escherichia coli, Nature New Biol. 245: 106.PubMedGoogle Scholar
  92. Wilson, D. B., and Hogness, D. S., 1969, The enzymes of the galactose operon in Escherichia coli. IV. The frequencies of translation of the terminal cistrons in the operon, J. Biol. Chem. 244: 2143.PubMedGoogle Scholar
  93. Wulff, D. L., 1976, Lambda cin-1, a new mutation which enhances lysogenization by bacteriophage lambda, and the genetic structure of the lambda cy region, Genetics 82: 401.PubMedGoogle Scholar
  94. Yarmolinsky, M. B., and Wiesmeyer, H., 1960, Regulation by coliphage lambda of the expression of the capacity to synthesize a sequence of host enzymes. Proc. Natl. Acad. Sci. U.S.A. 46: 1626PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1979

Authors and Affiliations

  • Allan Campbell
    • 1
  1. 1.Department of Biological SciencesStanford UniversityStanfordUSA

Personalised recommendations