Advertisement

Regulation of the Protein-Synthesizing Machinery—Ribosomes, tRNA, Factors, and So On

  • O. Maaløe
Part of the Biological Regulation and Development book series (BRD, volume 1)

Abstract

The long title of this chapter was suggested by the editor. I find it excellent because, right away, it points to the complexity and vagueness of the subject. This in turn forces the author to clarify his position. First of all I shall not deal with eukaryotic cells; partly because I lack the necessary specialized knowledge, but also because, as a rule, these cells contain more than one protein-synthesizing system (PSS), making them particularly difficult to analyze. So, this chapter is about the PSS in bacteria with the usual bias toward Escherichia coli.

Keywords

Core Protein Core Gene Passive Control Fusidic Acid Glucose Minimal Medium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aboud, M., and Pastan, I., 1973, Stimulation of lac transcription by guanosine 5’-diphosphate, 2’ (or 3’)-diphosphate and transfer nucleic acid, J,Biol. Chem. 248: 3356.Google Scholar
  2. Aboud, M., and Pastan, I., 1975, Activation of transcription by guanosine 5’-diphosphate, 3’-diphos- phate, transfer ribonucleic acid, and a novel protein from Escherichia coli, J. Biol. Chem. 250: 2189.PubMedGoogle Scholar
  3. Andersen, K. B., 1974, Oxygen uptake and energetics of Escherichia coli, Lunteren Lectures on Molecular Genetics, 1974 Symposium on the Bacterial Envelope, Lunteren.Google Scholar
  4. Artz, S. W., and Broach, J. R., 1975, Histidine regulation in Salmonella typhimurium: An activatorattenuator model of gene regulation, Proc. Natl. Acad. Sci. U.S.A. 72: 3453.PubMedCrossRefGoogle Scholar
  5. Baker, R. F., and Yanofsky, C., 1968, The periodicity of RNA polymerase initiations: A new regulatory feature of transcription, Proc. Natl. Acad. Sci. U.S.A. 60: 313.PubMedCrossRefGoogle Scholar
  6. Bennett, P. M., and Maa10e, O., 1975, The effects of fusidic acid on growth, ribosome synthesis and RNA metabolism in Escherichia coli, J. Mol. Biol. 90: 541.CrossRefGoogle Scholar
  7. Blumenthal, R. M., Reeh, S. V., and Pedersen, S., 1976, Regulation of the transcription factor and a subunit of RNA polymerase in Escherichia coli B/r, Proc. Natl. Acad. Sci. U.S.A. 73: 2285.PubMedCrossRefGoogle Scholar
  8. Borek, E., Ryan, A., and Rockenbach, J., 1955, Studies on a mutant of Escherichia coli with unbalanced ribonucleic acid synthesis, J. Bacteriol. 71: 318.Google Scholar
  9. Bremer, H., and Dalbow, D. G., 1975, Regulatory state of ribosomal genes and physiological changes in the concentration of free ribonucleic acid polymerase in Escherichia coli, Biochem J. 150: 9.PubMedGoogle Scholar
  10. Cashel, M., and Gallant, J., 1969, Two compounds implicated in the function of the RC gene of Escherichia coli, Nature 221: 838.PubMedCrossRefGoogle Scholar
  11. Chamberlin, M., Mangel, W., Rhodes, G., and Stahl, S., 1976, Biochemical studies on the transcription cycle, in: Benzon Symp. IX, pp. 22 - 39.Google Scholar
  12. Chandler, M. G., and Pritchard, R. H., 1975, The effect of gene concentration and relative gene dosage on gene output in Escherichia coli, Mol. Gen. Genet. 138: 127.CrossRefGoogle Scholar
  13. Coffman, R. L., Norris, T. E., and Koch, A. L., 1971, Chain elongation rate of messenger and polypeptides in slowly growing Escherichia coli, J. Mol. Biol. 60: 1.PubMedCrossRefGoogle Scholar
  14. Contesse, G., Crépin, M., and Gros, F., 1970, Transcription of the lactose operon in E. coli, in: The Lactose Operon ( J. R. Beckwith and D. Zipser, eds.), pp. 111 - 141, Cold Spring Harbor Lab., Cold Spring Harbor, New York.Google Scholar
  15. Crépin, M., Lelong, J.-C., and Gros, F., 1973, Early steps in the formation of a translation initiation complex on newly transcribed messenger RNA, in: Protein Synthesis in Reproductive Tissue ( E. Diczfalusy, ed.), pp. 33 - 51, Karolinska Institutet, Stockholm.Google Scholar
  16. Dagley, S., Turnock, G., and Wild, D. G., 1961, The accumulation of ribonucleic acid by a mutant of E. coli, Biochem. J. 88: 555.Google Scholar
  17. Dalbow, D. G., and Bremer, H., 1975, Metabolic regulation of 13-galactosidase synthesis in Escherichia coli. A test for constitutive ribosome synthesis, Biochem. J. 150: 1.Google Scholar
  18. Dalbow, D. G., and Young, R., 1975, Synthesis time of /3-galactosidase in Escherichia coli B/r as a function of growth rate, Biochem. J. 150: 13.Google Scholar
  19. Dennis, P. P., and Nomura, M., 1974, Stringent control of ribosomal protein gene expression in Escherichia coli, Proc. Natl. Acad. Sci. U.S.A. 71: 3819.Google Scholar
  20. Dennis, P. P., and Young, R. F., 1975, Regulation of ribosomal protein synthesis in Escherichia coli B/r, J. Bacteriol. 121: 994.PubMedGoogle Scholar
  21. Deusser, E., 1972, Heterogeneity of ribosomal populations in Escherichia coli cells grown in different media, Mol. Gen. Genet. 119: 249.CrossRefGoogle Scholar
  22. Engbaek, F., Kjelgaard, N. O., and Maalöe, 0., 1973, Chain growth rate of ß-galactosidase during exponential growth and amino acid starvation, J. Mol. Biol. 75: 109.PubMedCrossRefGoogle Scholar
  23. Engbaek, F., Gross, C., and Burgess, R. R., 1976, Biosynthesis of RNA polymerase, in: Benzon Symp. IX, pp. 117 - 124.Google Scholar
  24. Engberg, B., and Nordström, K., 1975, Replication of R-factor R1 in Escherichia coli K-12 at different growth rates, J. Bacterial. 123: 179.Google Scholar
  25. Fiil, N. P., v.Meyenburg, K., and Friesen, J. D., 1972, Accumulation and turnover of guanosine tetraphosphate in Escherichia coli, J. Mol. Biol. 71: 769.Google Scholar
  26. Forchhammer, J., and Kjeldgaard, N. 0., 1968, Regulation of messenger RNA synthesis in Escherichia coli, J. Mol. Biol. 37: 245.Google Scholar
  27. Forchhammer, J., and Lindahl, L., 1971, Growth rate of polypeptide chains as a function of the cell growth rate in a mutant of Escherichia coli 15, J. Mol. Biol. 55: 563.PubMedCrossRefGoogle Scholar
  28. Forchhammer, J., Jackson, E. N., and Yanofsky, C., 1972, Different half-lives of messenger RNA corresponding to different segments of the tryptophan operon of Escherichia colt, J. Mol. Biol. 71: 687.PubMedCrossRefGoogle Scholar
  29. Fowler, A. V., and Zabin, I., 1977, The amino acid sequence of ß-galactosidase of Escherichia colt, Proc. Natl. Acad. Sci. U.S.A. 74: 1507.PubMedCrossRefGoogle Scholar
  30. Friesen, J. D., Fiil, N. P., and v.Meyenburg, K., 1975, Synthesis and turnover of basal level guanosine tetraphosphate in Escherichia colt, J. Biol. Chem. 250: 304.PubMedGoogle Scholar
  31. Gallant, J., 1976, Elements of the down-shift servomechanism, in: Benton Symp. IX, pp. 385392.Google Scholar
  32. Gallant, J., and Lazzarini, R. A., 1976, The regulation of ribosomal RNA synthesis and degradation in bacteria, in: Protein Synthesis, Vol. 2 ( E. H. McConkey, ed.), pp. 309 - 359, Marcel Dekker, New York.Google Scholar
  33. Gallant, J., Palmer, L., and Pao, C. C., 1977, Anomalous synthesis of ppGpp in growing cells, Cell 11: 181.PubMedCrossRefGoogle Scholar
  34. Gausing, K., 1972, Efficiency of protein and messenger RNA synthesis in bacteriophage T4-infected cells of Escherichia coli, J. Mol. Biol. 71: 529.PubMedCrossRefGoogle Scholar
  35. Gausing, K., 1974, Ribosomal protein in E. colt.: Rate of synthesis and pool size at different growth rates, Mol. Gen. Genet. 129: 61.Google Scholar
  36. Gausing, K., 1976, Synthesis of rRNA and r-protein mRNA in E. colt at different growth rates, in: Benzon Symp. IX, pp. 292 - 303.Google Scholar
  37. Gausing, K., 1977, Regulation of ribosome production in Escherichia colt: Synthesis and stability of ribosomal RNA and of ribosomal protein messenger RNA at different growth rates, J. Mol. Biol. 115: 335.PubMedCrossRefGoogle Scholar
  38. Gordon, J., 1970, Regulation of the in vivo synthesis of the polypeptide chain elongation factors in Escherichia colt, Biochemistry 9: 912.PubMedCrossRefGoogle Scholar
  39. Hansen, M. T., Bennett, P. M., and v.Meyenburg, K., 1973, Intrasonic polarity during dissociation of translation from transcription in Escherichia coli, J. Mol. Biol. 77: 589.PubMedCrossRefGoogle Scholar
  40. Hansen, M. T., Pato, M. L., Molin, S., Fiil, N. P., and v.Meyenburg, K., 1975, Simple downshift and resulting lack of correlation between ppGpp pool size and ribonucleic acid accumulation, J. Bacteriol. 122: 585.PubMedGoogle Scholar
  41. Haseltine, W. A., and Block, R., 1973, Synthesis of guanosine tetra-and pentaphosphate requires the presence of a codon-specific, uncharged transfer ribonucleic acid in the acceptor site of ribosomes, Proc. Natl. Acad. Sci. U.S.A. 70: 1564.PubMedCrossRefGoogle Scholar
  42. Henning, U., Dietrich, J., Murray, K. N., and Deppe, G., 1968, Regulation of pyruvate dehydrogenase synthesis: Substrate induction, in: Molecular Genetics ( H. G. Wittmann and H. Schuster, eds.), pp. 223 - 236, Springer-Verlag, Berlin and New York.CrossRefGoogle Scholar
  43. Heyden, B., Nusslein, C., and Schaller, H., 1975, Initiation of transcription within an RNA-polymerase binding site, Eur. J. Biochem. 55: 147.PubMedCrossRefGoogle Scholar
  44. Hirsch, J., and Schleif, R., 1973, In vivo experiments on the mechanism of action of L-arabinose C gene activator and lactose repressor, J. Mol. Biol. 80: 433.CrossRefGoogle Scholar
  45. Hirsh, J., and Schleif, R., 1976, Electron microscopy of gene regulation: The L-arabinose operon, Biochemistry 73: 1518.Google Scholar
  46. Imamoto, F., 1968, On the initiation of transcription of the tryptophan operon in Escherichia colt, Proc. Natl. Acad. Sci. U.S.A. 60: 305.PubMedCrossRefGoogle Scholar
  47. Ingraham, J., and MaaloOe, O., 1967, Cold-sensitive mutants and the minimum temperature of growth of bacteria, in: Molecular Mechanisms of Temperature Adoptation ( C. L. Prosser, ed.), pp. 297 - 309, American Association for the Advancement of Science, Washington, D.C.Google Scholar
  48. Ishihama, A., Taketo, M., Saitoh, T., and Fukuda, R., 1976, Control of formation of RNA polymerase in Escherichia colt, in: RNA Polymerase ( R. Losick and M. Chamberlin, eds.), pp. 485 - 502, Cold Spring Harbor Lab., Cold Spring Harbor, New York.Google Scholar
  49. Iwakura, Y., Koreaki, I., and Ishihama, A., 1974, Biosynthesis of RNA polymerase in Escherichia colt, I.Google Scholar
  50. Control of RNA polymerase content at various growth rates, Mol. Gen. Genet. 133: 1.Google Scholar
  51. Johnsen, K., Molin, S., Karlström, O., and Maal0e, 0., 1977, Control of protein synthesis in Escherichia colt: Analysis of an energy-source shift-down, J. Bacteriol. 131: 18.PubMedGoogle Scholar
  52. Kessler, D. P., and Rickenberg, H. V., 1963, The competitive inhibition of a-methyl glucoside uptake in Escherichia colt, Biochem. Biophys. Res. Commun. 10: 482.CrossRefGoogle Scholar
  53. Kjeldgaard, N. O., 1967, Regulation of nucleic acid and protein formation in bacteria, in: Advances in Microbial Physiology, Vol. 1, ( A. H. Rose and I. F. Wilkinson, eds.), pp. 39 - 95, Academic Press, New York.CrossRefGoogle Scholar
  54. Kjelgaard, N. O., and Gausing, K., 1973, Regulation of biosynthesis of ribosomes, in: Ribosomes ( M. Nomura, A. Tissières, and P. Lengyel, eds.), pp. 369 - 392, Cold Spring Harbor Lab. Cold Spring Harbor, New York.Google Scholar
  55. Kjeldgaard, N. O., Maalbe, O., and Schaechter, M., 1958, The transition between different physiologi-cal states during balanced growth of Salmonella typhimurium, J. Gen. Microbiol. 19: 607.PubMedGoogle Scholar
  56. Koch, A. L., 1971, The adaptive response of Escherichia cob to a feast and famine existence, in: Advances in Microbial Physiology, Vol. 6 ( Koch, A. L., eds.), pp. 147 - 217, Academic Press,New York.Google Scholar
  57. Koch, A. L., and Deppe, C. S., 1971, In vivo assay of protein synthesizing capacity of Escherichia cob from slowly growing chemostat cultures, J. Mol. Biol. 55: 549.PubMedCrossRefGoogle Scholar
  58. Kurland, C. G., and Maalbe, O., 1962, Regulation of ribosomal and transfer RNA synthesis, J. Mol. Biol. 4: 193.PubMedCrossRefGoogle Scholar
  59. Lazzarini, R. A., Cashel, M., and Gallant, J., 1971, On the regulation of guanosine tetraphosphate levels in stringent and relaxed strains of Escherichia coli, J. Biol. Chem. 246: 4381.PubMedGoogle Scholar
  60. Lehninger, A. L., 1965, Bioenergetics, Benjamin, New York.Google Scholar
  61. Lim, L. W., and Kennell, D., 1974, Evidence against transcription termination within the E. coli lac operon, Mol. Gen. Genet. 133: 367.Google Scholar
  62. Lindahl, L., 1975, Intermediates and time kinetics of the in vivo assembly of Escherichia coli ribosomes, J. Mol. Biol. 92: 15.PubMedCrossRefGoogle Scholar
  63. Lindahl, L., Jaskunas, S. R., Dennis, P. P., and Nomura, M., 1975, Cluster of genes in Escherichia coli for ribosomal proteins, ribosomal RNA, and RNA polymerase subunits, Proc. Natl. Acad. Sci. U.S.A. 72: 2743.PubMedCrossRefGoogle Scholar
  64. Lindqvist, R. C., and Nordström, K., 1970, Resistance of Escherichia coli to penicillins VII. Purification and characterization of a penicillinase mediated by the R factor R1, J. Bacteriol. 101: 232.PubMedGoogle Scholar
  65. Maalbe, 0., 1969, An analysis of bacterial growth, Dev. Biol. Suppl. 3: 33.Google Scholar
  66. Maalbe, O., and Kjeldgaard, N. 0., 1966, Control of Macromolecular Synthesis, Benjamin, New York.Google Scholar
  67. Matzura, H., Mohn, S., and Maalbe, 0., 1971, Sequential biosynthesis of the ß and ß’ subunits of the DNA-dependent RNA polymerase from Escherichia coli, J. Mol. Biol. 59: 17.PubMedCrossRefGoogle Scholar
  68. v.Meyenburg, K., 1971, Transport-limited growth rates in a mutant of Escherichia coli, J. Bacteriol. 107: 878.Google Scholar
  69. Mohn, S., 1976, Ribosomal RNA chain elongation rates in Escherichia coli, in: Benzon Symp. IX, pp. 333: 339.Google Scholar
  70. Molin, S., v.Meyenburg, K., Maalbe, O., Hansen, M. T., and Pato, M. L., 1977, Control of ribosome synthesis in Escherichia coli: Analysis of an energy source shift-down, J. Bacteriol. 131: 7.Google Scholar
  71. Muto, A., Otaka, E., and Osawa, S., 1966, Protein synthesis in a relaxed-control mutant of Escherichia coli upon recovery from methionine starvation, J. Mol. Biol. 19: 60.PubMedCrossRefGoogle Scholar
  72. Nath, K., and Koch, A. L., 1970, Protein degradation in Escherichia coli, J. Biol. Chem. 245: 2889.PubMedGoogle Scholar
  73. Neidhardt, F. C., 1963, Properties of a bacterial mutant lacking amino acid control of RNA synthesis, Biochim. Biophys. Acta 68: 365.CrossRefGoogle Scholar
  74. Nomura, M., 1976, Organization of bacterial genes for ribosomal components: Studies using novel approaches, Cell 9: 633.PubMedCrossRefGoogle Scholar
  75. Norris, T. E., and Koch, A. L., 1972, Effect of growth rate on the relative rates of synthesis of messenger, ribosomal and transfer RNA in Escherichia coli, J. Mol. Biol. 64: 633.PubMedCrossRefGoogle Scholar
  76. O’Farrell, P. H., 1975, High resolution two-dimensional electrophoresis of proteins, J. Biol. Chem. 250: 4007.PubMedGoogle Scholar
  77. Pato, M. L., and v.Meyenburg, K., 1970, Residual RNA synthesis in Escherichia coli after inhibition of transcription by rifampicin, Cold Spring Harbor Symp. Quant. Biol. 35: 497.CrossRefGoogle Scholar
  78. Pato, M. L., Bennett, P. M., and v.Meyenburg, K., 1973, Messenger ribonucleic acid synthesis and degradation in Escherichia coli during inhibition of translation, J. Bacteriol. 116: 710.PubMedGoogle Scholar
  79. Pedersen, F. S., Lund, E., and Kjeldgaard, N. 0., 1973, Codon specific, tRNA dependent in vitro synthesis of ppGpp and pppGpp, Nature New Biol. 243: 13.Google Scholar
  80. Pedersen, S., 1976, Stability of nascent ribosomal RNA in Escherichia coli, in: Benzon Symp. IX, pp. 345: 352.Google Scholar
  81. Pedersen, S., Bloch, P. L., Reeh, S., and Neidhardt, F. C., 1978a, Patterns of protein synthesis in Escherichia coli: A catalog of the amount of 140 individual proteins at different growth rates, Cell 14: 179.PubMedCrossRefGoogle Scholar
  82. Pedersen, S., Reeh, S., and Friesen, J. D., 1978b, Functional mRNA half-lives in E. coli, Mol. Gen. Genet.Google Scholar
  83. Pine, M. J., 1970, Steady-state measurement of the turnover of amino acid in the cellular proteins of growing Escherichia coli: Existence of two kinetically distinct reactions, J. Bacteriol. 103: 207.PubMedGoogle Scholar
  84. Pongs, O., and Ulbrich, N., 1976, Specific binding of formylated initiator-tRNA to Escherichia coli RNA polymerase, Proc. Natl. Acad. Sci. U.S.A. 73: 3064.PubMedCrossRefGoogle Scholar
  85. Ramakrishnan, T., and Echols, H., 1973, Purification and properties of M protein: An accessory factor for RNA polymerase, J. Mol. Biol. 78: 675.Google Scholar
  86. Reeh, S., Pedersen, S., and Friesen, J. D., 1976, Biosynthetic regulation of individual proteins in relA+ and relA strains of Escherichia coli during amino acid starvation, Mol. Gen. Genet. 149: 279.CrossRefGoogle Scholar
  87. Revel, M., 1972, Polypeptide chain initiation: The role of ribosomal protein factors and ribosomal subunits, in: The Mechanism of Protein Syntheses and Its Regulation ( L. Bosch, ed.), pp. 87 - 131, North-Holland, Amsterdam.Google Scholar
  88. Richardson, J. P., 1975, Initiation of transcription by Escherichia coli RNA polymerase from supercoiled and non-supercoiled bacteriophage PM2 DNA, J. Mol. Biol. 91: 477.PubMedCrossRefGoogle Scholar
  89. Risebrough, R. W., Tissières, A., and Watson, J. D., 1962, Messenger RNA attachment to active ribosomes, Proc. Natl. Acad. Sci. U.S.A. 48: 430.Google Scholar
  90. Rose, J. K., and Yanofsky, C., 1972, Metabolic regulation of the tryptophan operon of Escherichia coli: Repressor-independent regulation of transcription iniation frequency, J. Mol. Biol. 69: 103.PubMedCrossRefGoogle Scholar
  91. Rünzi, W., and Matzura, H., 1976, Distribution of RNA polymerase between cytoplasm and nucleoid in a strain of Escherichia coli, in: Benzon Symp. IX, pp. 115 - 116.Google Scholar
  92. Schleif, R., 1967, Control of production of ribosomal protein, J. Mol. Biol. 27: 41.PubMedCrossRefGoogle Scholar
  93. Schleif, R., 1968, Origin of chloramphenicol particle protein, J. Mol. Biol. 37: 119.PubMedCrossRefGoogle Scholar
  94. Seeburg, P. H., Nüsslein, C., and Schaller, H., 1977, Interaction of RNA polymerase with promoters from bacteriophage fd, Eur. J. Biochem. 74: 107.PubMedCrossRefGoogle Scholar
  95. Shin, D. H., and Moldave, K., 1966, Effect of ribosomes on the biosynthesis of ribonucleic acid in vitro, J. Mol. Biol. 21: 231.PubMedCrossRefGoogle Scholar
  96. Sompayrac, L., and Maals e, O., 1973, Autorepressor model for control of DNA replication, Nature New Biol. 241: 133.PubMedCrossRefGoogle Scholar
  97. Stent, G. S., 1966, Genetic transcription, Proc. Roy. Soc. Lond. Ser. B 164: 181.CrossRefGoogle Scholar
  98. Stephens, J. C., Artz, S. W., and Ames, B. N., 1975, Guanosine 5’-diphosphate 3’-diphosphate (ppGpp): Positive effector for histidine operon transcription and general signal for amino-acid deficiency, Proc. Natl. Acad. Sci. U.S.A. 72: 4389.PubMedCrossRefGoogle Scholar
  99. Summerton, J. E., 1976, Measurement of the pool size and synthesis rate of the metabolically unstable fraction of RNA in Escherichia coli by a method independent of hybridization efficiency and unaffected by precursor compartmentation, J. Mol. Biol. 100: 127.PubMedCrossRefGoogle Scholar
  100. Talkad, V., Schneider, E., and Kennell, D., 1976, Evidence for variable rates of ribosome movement in Escherichia coli, J. Mol. Biol. 104: 299.Google Scholar
  101. Travers, A., 1976a, Modulation of RNA polymerase specificity by ppGpp, Mol. Gen. Genet. 147: 225.CrossRefGoogle Scholar
  102. Travers, A., 19766, RNA polymerase specificity and the control of growth, Nature 263: 641.Google Scholar
  103. Venetianer, P., Sümegi, J., and Udvardy, A., 1976, Properties of ribosomal RNA promoters, in: Benzon Symp. IX, pp. 252 – 265.Google Scholar
  104. Warner, J. R., Knopf, P. M., and Rich, A., 1962, A multiple ribosomal structure in protein synthesis, Proc. Natl. Acad. Sci. U.S.A. 49: 122.CrossRefGoogle Scholar
  105. Yamamoto, M., Strycharz, W. A., and Nomura, M., 1976, Identification of genes for elongation factor Ts and ribosomal protein S2 in E. coli, Cell 8: 129.PubMedCrossRefGoogle Scholar
  106. Yanagisawa, K., 1962, The simultaneous accumulation of RNA and of a repressor of /3-galactosidase synthesis, Biochem. Biophys. Res. Commun. 9: 88.CrossRefGoogle Scholar
  107. Yanofsky, C., 1976, Control sites in the tryptophan operon, in: Benzon Symp. IX, pp. 149 - 160.Google Scholar
  108. Yanofsky, C., and Ito, J., 1966, Nonsense codons and polarity in the tryptophan operon, J. Mol. Biol. 21: 313.PubMedCrossRefGoogle Scholar
  109. Yoshikawa, H., and Sueoka, N., 1963, Sequential replication of Bacillus subtilis chromosome, Proc. Natl. Acad. Sci. U.S.A. 49: 559.PubMedCrossRefGoogle Scholar
  110. Zaritsky, A., and v.Meyenburg, K., 1974, Synthesis of ribosomal protein during the cell cycle of Escherichia coli B/r, Mol. Gen. Genet. 129: 217.CrossRefGoogle Scholar
  111. Zillig, W., Mailhammer, R., and Rohrer, H., 1976, Structural modifications of DNA-dependent RNA polymerase as means for gross regulation of transcription, in: Benzon Symp. IX, pp. 43 - 54.Google Scholar

Copyright information

© Plenum Press, New York 1979

Authors and Affiliations

  • O. Maaløe
    • 1
  1. 1.Institute of MicrobiologyUniversity of CopenhagenCopenhagenDenmark

Personalised recommendations