• Deborah A. Steege
  • Dieter G. Söll
Part of the Biological Regulation and Development book series (BRD, volume 1)


Suppression is the genetic term used to describe the effect of a general class of secondary mutations that restore a wild or pseudo-wild type phenotype to a mutant organism in which the primary mutation is still maintained. The isolation of a suppressor serves to identify a compensating mutation in the second of a pair of genes which may encode macromolecules interacting at some point in viral or cell metabolism. Since the molecular mechanism by which a wild type phenotype appears usually is not prescribed by the genetic selection imposed, one would predict that biochemical alterations of many different types could correct a given deficiency. In fact, evidence accumulated since the first report of suppression in 1927 (Bonnier, 1927) clearly shows that correction mechanisms operate both during the transcription and translation steps of gene expression, and also at the level of the final gene products. The many types of genetic suppression were enumerated several years ago in the comprehensive article of Hartman and Roth (1973). The experimental evidence which has identified the molecular basis for nonsense suppression (Garen, 1968; Körner et al, 1978), missense suppression (Hill, 1975), frameshift suppression (Roth, 1974), and ribosomal suppression (Gorini, 1970, 1974) has been discussed. Hawthorne and Leupold (1974) have recently summarized our knowledge of genetic suppression in yeast. These remain excellent discussions of the basic principles for the class of suppressor mutations, termed informational suppressors, that affects the macromolecular components of the transcription and translation processes.


Anticodon Loop Nonsense Suppression Nonsense Codon tRNA Species tRNA Anticodon 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adetugbo, K., Milstein, C., and Secher, D. S., 1977, Molecular analysis of spontaneous somatic mutants, Nature 265: 299–304.PubMedCrossRefGoogle Scholar
  2. Adhya, S., Gottesman, M., and de Crombrugghe, B., 1974, Release of polarity in Escherichia coli by gene N of phage X: Termination and antitermination of transcription, Proc. Natl. Acad. Sci. U.S.A., 71: 2534–2538.PubMedCrossRefGoogle Scholar
  3. Adhya, S., Gottesman, M., de Crombrugghe, B., and Court, D., 1976, Transcription termination regulates gene expression, in: RNA Polymerase ( R. Losick and M. Chamberlin, eds.), pp. 719–730, Cold Spring Harbor Lab., Cold Spring Harbor, New York.Google Scholar
  4. Agris, P., and Soll, D., 1977, The modified nucleosides in transfer RNA, in: Nucleic Acid-Protein Recognition ( H. Vogel, ed.), pp. 321–344, Academic Press, New York.Google Scholar
  5. Air, G. M., Sanger, F., and Coulson, A. R., 1976, Nucleotide and amino acid sequences of gene G of 4,X174, J. Mol. Biol. 108: 519–533.PubMedCrossRefGoogle Scholar
  6. Akaboshi, E., Inouye, M., and Tsugita, A., 1976, Effect of neighboring nucleotide sequences on suppression efficiency in amber mutants of T4 phage lysozyme, Mol. Gen. Genet. 149: 1–4.PubMedCrossRefGoogle Scholar
  7. Altman, S., 1976, A modified uridine in the anticodon of E. coli tRNAI Yr sue, Nucleic Acids Res. 3: 441–448.PubMedGoogle Scholar
  8. Altman, S., 1978, tRNA biosynthesis, in: Transfer RNA (S. Altman, ed.), pp. 48–77, MIT Press, Cambridge, Massachusetts.Google Scholar
  9. Altman, S., and Smith, J. D., 1971, Tyrosine tRNA precursor molecule polynucleotide sequence, Nature New Biol. 233: 35–39.PubMedGoogle Scholar
  10. Altman, S., Brenner, S., and Smith, J. D., 1971, Identification of an ochre-suppressing anticodon, J. Mol. Biol. 56: 195–197.PubMedCrossRefGoogle Scholar
  11. Atkins, J. F., and Ryce, S., 1974, UGA and non-triplet suppressor reading of the genetic code, Nature 249: 527–530.PubMedCrossRefGoogle Scholar
  12. Baan, R. A., Duijfjes, J. J., van Leerdam, E., van Knippenberg, P. H., and Bosch, L., 1976, Specific in situ cleavage of 16S ribosomal RNA of Escherichia coli interferes with the function of initiation factor IF-1, Proc. Natl. Acad. Sci. U.S.A. 73: 702–706.PubMedCrossRefGoogle Scholar
  13. Bachmann, B. J., Low, K. B., and Taylor, A. L., 1976, Recalibrated linkage map of Escherichia coli K-12, Bacterial. Rev. 40: 116–167.Google Scholar
  14. Barrell, B. G., Air, G. M., and Hutchison, C. A., III, 1976, Overlapping genes in bacteriophage 4,X174, Nature 264: 34–40.PubMedCrossRefGoogle Scholar
  15. Bartz, J., 1972, N6-(02-Isopentenyl)adenosine: Biosynthesis in vitro in transfer RNA by an enzyme purified from Escherichia coli, Biochimie 54: 31–39.PubMedCrossRefGoogle Scholar
  16. Beaudet, A. L., and Caskey, C. T., 1970, Release factor translation of RNA phage terminator codons, Nature 227: 38–40.PubMedCrossRefGoogle Scholar
  17. Beaudet, A. L., and Caskey, C. T., 1972, Polypeptide chain termination, in: The Mechanism of Protein Synthesis and Its Regulation ( L. Bosch, ed.), pp. 133–172, American Elsevier, New York.Google Scholar
  18. Beckwith, J., 1963, Restoration of operon activity by suppressors, Biochim. Biophys. Acta 76: 162–164.PubMedCrossRefGoogle Scholar
  19. Bell, J., and Maclntyre, R., 1973, Characterization of acid phosphatase-1 null activity mutants of Drosophila melanogaster, Biochem. Genet. 10: 39–55.PubMedCrossRefGoogle Scholar
  20. Benzer, S., 1966, Adventures in the rII region, in: Phage and the Origins of Molecular Biology U. Cairns, G. S. Stent, and J. D. Watson, eds.), pp. 157–165, Cold Spring Harbor Lab., Cold Spring Harbor, New York.Google Scholar
  21. Benzer, S., and Champe, S. P., 1962, A change from nonsense to sense in the genetic code, Proc. Natl. Acad. Sci. U.S.A. 48: 1114–1121.PubMedCrossRefGoogle Scholar
  22. Beyreuther, K., Adler, K., Geisler, N., and Klemm, A., 1973, The amino acid sequence of lac repressor, Proc. Natl. Acad. Sci. U.S.A. 70: 3576–3580.PubMedCrossRefGoogle Scholar
  23. Bigelis, R., Keesey, J., and Fink, G. R., 1977, The his-4 fungal gene cluster is not polycistronic, in: Eukaryotic Genetic Systems, (G. Wilcox, ed.), ICN-UCLA Symp. Vol. VIII, pp. 179–187, Academic Press, New York.Google Scholar
  24. Biswas, D. K., and Gorini, L., 1972, Restriction, de-restriction and mistranslation in missense suppression. Ribosomal discrimination of transfer RNA’s, J. Mol. Biol. 64: 119–134.PubMedCrossRefGoogle Scholar
  25. Bonnier, G., 1927, Note on the so-called vermilion-duplication, Hereditas 7: 229–232.CrossRefGoogle Scholar
  26. Bothwell, A. L. M., Stark, S. C., and Altman, S., 1976, Ribonuclease P substrate specificity: Cleavage of a bacteriophage 080-induced RNA, Proc. Natl. Acad. Sci. U.S.A. 73: 1912–1916.PubMedCrossRefGoogle Scholar
  27. Bourgeois, S., Cohn, M., and Orgel, L. E., 1965, Suppression of and complementation among mutants of the regulatory gene of the lactose operon of Escherichia coli, J. Mol. Biol. 14: 300–302.PubMedCrossRefGoogle Scholar
  28. Brandriss, M. C., Stewart, J. W., Sherman, F., and Botstein, D., 1976, Substitution of serine caused by a recessive lethal suppressor in yeast, J. Mol. Biol. 102: 467–476.PubMedCrossRefGoogle Scholar
  29. Breathnach, R., Mandel, J. L., and Chambon, P., 1977, Ovalbumin gene is split in chicken DNA, Nature 270: 314–319.PubMedCrossRefGoogle Scholar
  30. Breckenridge, L., and Gorini, L., 1970, Genetic analysis of streptomycin resistance in Escherichia coli, Genetics 65: 9–25.PubMedGoogle Scholar
  31. Brenner, D. J., Fournier, M. J., and Doctor, B. P., 1970, Isolation and partial characterization of the transfer ribonucleic acid cistrons from Escherichia coli, Nature 227: 448–451.PubMedCrossRefGoogle Scholar
  32. Brenner, S., and Beckwith, J. R., 1965, Ochre mutants, a new class of suppressible nonsense mutants, J. Mol. Biol. 13: 629–637.CrossRefGoogle Scholar
  33. Bretscher, M. S., 1968, Polypeptide chain termination: An active process, J. Mol. Biol. 34: 131–136.PubMedCrossRefGoogle Scholar
  34. Brot, N., Tate, W. P., Caskey, C. T., and Weissbach, H., 1974, The requirement for ribosomal proteins L7 and L12 in peptide chain termination, Proc. Natl. Acad. Sci. U.S.A. 71: 89–92.PubMedCrossRefGoogle Scholar
  35. Brunel, F., and Davison, J., 1975, Bacterial mutants able to partly suppress the effect of N mutations in bacteriophage X, Mol. Gen. Genet. 136: 167–180.PubMedCrossRefGoogle Scholar
  36. Buckel, P., Piepersberg, W., and Böck, A., 1976, Suppression of temperature-sensitive aminoacyl-tRNA synthetase mutations by ribosomal mutations: A possible mechanism, Mol. Gen. Genet. 149: 5161.Google Scholar
  37. Buckingham, R. H., 1976, Anticodon conformation and accessibility in wild type and suppressor tryptophan tRNA from E. coli, Nucleic Acids Res. 3: 965–975.PubMedGoogle Scholar
  38. Capecchi, M. R., and Klein, H. A., 1969, Characterization of three proteins involved in polypeptide chain termination, Cold Spring Harbor Symp. Quant. Biol. 34: 469–477.PubMedCrossRefGoogle Scholar
  39. Capecchi, M. R., Hughes, S. H., and Wahl, G. M., 1975, Yeast super-suppressors are altered tRNAs capable of translating a nonsense codon in vitro, Cell 6: 269–277.PubMedCrossRefGoogle Scholar
  40. Capecchi, M. R., von der Haar, R. A., Capecchi, N. E., and Sveda, M. M., 1977, The isolation of a suppressible nonsense mutant in mammalian cells, Cell 12: 371–381.PubMedCrossRefGoogle Scholar
  41. Carbon, J., and Fleck, E. W., 1974, Genetic alteration of structure and function in glycine transfer RNA of Escherichia coli: Mechanism of suppression of the tryptophan synthetase A78, J. Mol. Biol. 85: 371–391.PubMedCrossRefGoogle Scholar
  42. Caskey, C. T., and Beaudet, A. L., 1971, Proceedings of the Symposium on Molecular Mechanisms of Antibiotic Action on Protein Biosynthesis and Membranes (E. Munoz, F. Garvia-Fernandiz, and D. Vazquez, eds.), pp. 326–336, Granada, Spain.Google Scholar
  43. Caskey, C. T., Bosch, L., and Konecki, D. S., 1977, Release factor binding to ribosome requires an intact 16S rRNA 3’ terminus, J. Biol. Chem. 252: 4435–4437.PubMedGoogle Scholar
  44. Celis, J. E., Hooper, M. L., and Smith, J. D., 1973, Amino acid acceptor stem of E. coli suppressor tRNATY` is a site of synthetase recognition, Nature New Biol. 244: 261–264.PubMedGoogle Scholar
  45. Celis, J. E., Coulondre, C., and Miller, J. H., 1976, Suppressor su+7 inserts tryptophan in addition to glutamine, J. Mol. Biol. 104: 729–734.PubMedCrossRefGoogle Scholar
  46. Chakrabarti, S. L., and Gorini, L., 1975, A link between streptomycin and rifampicin mutation, Proc. Natl. Acad. Sci. U.S.A. 72: 2084–2087.PubMedCrossRefGoogle Scholar
  47. Clegg, J. B., Weatherall, D. J., Contopolou-Griva, I., Caroutsos, K., Poungouras, P., and Tsevrenis, H., 1974, Haemoglobin Icaria, a new chain-termination mutant which causes a-thalassaemia, Nature 251: 245–247.PubMedCrossRefGoogle Scholar
  48. Colby, D. S., Schedl, P., and Guthrie, C., 1976, A functional requirement for modification of the wobble nucleotide in the anticodon of a T2 suppressor tRNA, Cell 9: 449–463.PubMedCrossRefGoogle Scholar
  49. Comer, M. M., 1977, Correlation between genetic and nucleotide distances in a bacteriophage T4 transfer RNA gene, J. Mol. Biol. 113: 267–271.PubMedCrossRefGoogle Scholar
  50. Corner, M. M., Guthrie, C., and McClain, W. H., 1974, An ochre suppressor of bacteriophage T4 that is associated with a transfer RNA, J. Mol. Biol. 90: 665–676.CrossRefGoogle Scholar
  51. Corner, M. M., Foss, K., and McClain, W. H., 1975, A mutation of the wobble nucleotide of a bacteriophage T4 transfer RNA, J. Mol. Biol. 99: 283–293.CrossRefGoogle Scholar
  52. Contreras, R., Ysebaert, M., Min Jou, W., and Fiers, W., 1973, Bacteriophage MS2 RNA: Nucleotide sequence of the end of the A protein gene and the intercistronic region, Nature New Biol. 241: 99–102.PubMedGoogle Scholar
  53. Coulondre, C., and Miller, J. H., 1977a, Genetic studies of the lac repressor: III. Additional correlation of mutational sites with specific amino acid residues, J. Mol. Biol. 117: 525–575.PubMedCrossRefGoogle Scholar
  54. Coulondre, C., and Miller, J. H., 1977b, Genetic studies of the lac repressor: IV. Mutagenic specificity in the lad gene of E. coli, J. Mol. Biol. 117: 577–606.PubMedCrossRefGoogle Scholar
  55. Cox, B. S., 1965, Cytoplasmic suppressor of super-suppressor in yeast, Heredity 20: 505–521.CrossRefGoogle Scholar
  56. Crick, F. H. C., 1966, Codon-anticodon pairing: The wobble hypothesis, J. Mol. Biol. 19: 548–555.PubMedCrossRefGoogle Scholar
  57. Crick, F. H. C., Barnett, L., Brenner, S., and Watts-Tobin, R. J., 1961, Triplet nature of the code, Nature 192: 1227–1232.PubMedCrossRefGoogle Scholar
  58. Culbertson, M. R., Charnes, L., Johnson, M. T., and Fink, G. R., 1977, Frameshifts and frameshift suppressors in Saccharomyces cerevisiae, Genetics 86: 745–764.PubMedGoogle Scholar
  59. Dabbs, E. R., and Wittmann, H. G., 1976, A strain of Escherichia coli which gives rise to mutations in a large number of ribosomal proteins, Mol. Gen. Genet. 149: 303–309.PubMedCrossRefGoogle Scholar
  60. Dalgarno, L., and Shine, J., 1973, Conserved terminal sequence in 18S rRNA may represent terminator anticodons, Nature New Biol. 245: 261–262.PubMedCrossRefGoogle Scholar
  61. Das, A., Court, D., and Adhya, S., 1976, Isolation and characterization of conditional lethal mutants of Escherichia coli defective in transcription termination factor rho, Proc. Natl. Acad. Sci. U.S.A. 73: 1959–1963.PubMedCrossRefGoogle Scholar
  62. Dickson, R. C., Abelson, J., Barnes, W. M., and Reznikoff, W. S., 1975, Genetic regulation: The lac control region, Science 187: 27–35.PubMedCrossRefGoogle Scholar
  63. Donis-Keller, H., Maxam, A. M., and Gilbert, W., 1977, Mapping adenines, guanines, and pyrimidines in RNA. Nucleic Acids Res. 4: 2527–2538.PubMedCrossRefGoogle Scholar
  64. Dudock, B., Lesiewicz, J., Greenberg, R., and Wu, E., 1978, A new class of modification reactions in E. coli and rabbit liver mitochondrial tRNA: The formation of methyl esters (submitted for publication).Google Scholar
  65. Edelmann, P., and Gallant, J., 1977, Mistranslation in E. coli, Cell 10: 131–137.PubMedCrossRefGoogle Scholar
  66. Efstratiadis, A., Kafatos, F. C., and Maniatis, T., 1977, The primary structure of rabbit ß-globin mRNA as determined from cloned DNA, Cell 10: 571–585.PubMedCrossRefGoogle Scholar
  67. Elseviers, D., and Gorini, L., 1975, Direct selection of mutants restricting efficiency of suppression and misreading levels in E. coli B, Mol. Gen. Genet. 137: 277–287.PubMedCrossRefGoogle Scholar
  68. Engelberg-Kulka, H., Dekel, L., and Israeli-Reches, M., 1977, Streptomycin-resistant Escherichia coli mutant temperature sensitive for the production of QB-infective particles, J. Virol. 21: 1–6.PubMedGoogle Scholar
  69. Farabaugh, P. J., 1978, Sequence of the lad gene, Nature 274: 765–769.PubMedCrossRefGoogle Scholar
  70. Feinstein, S. I., and Altman, S., 1977, Coding properties of an ochre-suppressing derivative of Escherichia coli tRNA; Y`, J. Mol. Biol. 112: 453–470.PubMedCrossRefGoogle Scholar
  71. Feinstein, S. I., and Altman, S., 1978, Context effects on nonsense codon suppression in Escherichia coli, Genetics 88: 201–219.PubMedGoogle Scholar
  72. Fiddes, J. C., 1976, Nucleotide sequence of the intercistronic region between genes G and F in bacteriophage 4X174 DNA, J. Mol. Biol. 107: 1–24.PubMedCrossRefGoogle Scholar
  73. Fiers, W., Contreras, R., Duerinck, F., Haegeman, G., Iserentant, D., Merregaert, J., Min Jou, W., Molemans, F., Raeymaekers, A., Van den Berghe, A., Volckaert, G., and Ysebaert, M., 1976, Complete nucleotide sequence of bacteriophage MS2 RNA: Primary and secondary structure of the replicase gene, Nature 260: 500–507.PubMedCrossRefGoogle Scholar
  74. Files, J. G., Weber, K., and Miller, J. H., 1974, Translational reinitiation: Reinitiation of lac repressor fragments at the three internal sites early in the lac i gene of Escherichia coli, Proc. Natl. Acad. Sci. U.S.A. 71: 667–670.PubMedCrossRefGoogle Scholar
  75. Fittler, F., Kline, L. K., and Hall, R. H., 1968, Biosynthesis of N6-(12-isopentenyl)adenosine. The precursor relationship of acetate and mevalonate to the A2-isopentenyl group of the transfer ribonucleic acid of microorganisms, Biochemistry 7: 940–944.PubMedCrossRefGoogle Scholar
  76. Fluck, M. M., Salser, W., and Epstein, R. H., 1977, The influence of the reading context upon the suppression of nonsense codons, Mol. Gen. Genet. 151: 137–149.PubMedCrossRefGoogle Scholar
  77. Fox, I. L., and Ganoza, M. C., 1968, Chain termination in vitro. Studies on the specificity of amber and ochre triplets, Biochem. Biophys. Res. Commun. 32: 1064–1070.PubMedCrossRefGoogle Scholar
  78. Franklin, N. C., 1974, Altered reading of genetic signals fused to the N operon of bacteriophage X: Genetic evidence for modification of polymerase by the protein product of the N gene, J. Mol. Biol. 89: 33–48.PubMedCrossRefGoogle Scholar
  79. Franklin, N. C., and Yanofsky, C., 1976, The N protein of X: Evidence bearing on transcription termination, polarity and the alteration of E. cou RNA polymerase, in: RNA Polymerase ( R. Losick and M. Chamberlin, eds.), pp. 693–706, Cold Spring Harbor Lab., Cold Spring Harbor, New York.Google Scholar
  80. Freymeyer, D. K., II, Shank, P. R., Edgell, M. H., Hutchison, C. A., III, and Vanaman, T. C., 1977, Amino acid sequence of the small core protein from bacteriophage ¢X174, Biochemistry 16: 45504556.Google Scholar
  81. Friedman, D. I., and Yarmolinsky, M., 1972, Prevention of the lethality of induced X prophage by an isogenic X plasmid, Virology 50: 472–481.PubMedCrossRefGoogle Scholar
  82. Galas, D. J., and Branscomb, E. W., 1976, Ribosome slowed by mutation to streptomycin resistance, Nature 262: 617–619.PubMedCrossRefGoogle Scholar
  83. Galluppi, G., Lowery, C., and Richardson, J. P., 1976, Nucleoside triphosphate requirement for termination of RNA synthesis by rho factor, in: RNA Polymerase ( R. Losick and M. Chamberlin, eds.), pp. 657–665, Cold Spring Harbor Lab., Cold Spring Harbor, New York.Google Scholar
  84. Ganoza, M. C., and Tomkins, J. K. N., 1970, Polypeptide chain termination in vitro: Competition for nonsense codons between a purified release factor and suppressor tRNA, Biochem. Biophys. Res. Commun. 40: 1455–1463.PubMedCrossRefGoogle Scholar
  85. Garen, A., 1968, Sense and nonsense in the genetic code, Science 160: 149–159.PubMedCrossRefGoogle Scholar
  86. Gefter, M. L., and Russell, R. L., 1969, Role of modifications in tyrosine transfer RNA: A modified base affecting ribosome binding, J. Mol. Biol. 39: 145–157.PubMedCrossRefGoogle Scholar
  87. Georgopoulos, C. P., 1971, Bacterial mutants in which the gene N function of bacteriophage lambda is blocked have an altered RNA polymerase, Proc. Natl. Acad. Sci. U.S.A. 68: 2977–2981.PubMedCrossRefGoogle Scholar
  88. Gesteland, R. F., Wolfner, M., Grisafi, P., Fink, G., Botstein, D., and Roth, J. R., 1976, Yeast suppressorsof UAA and UAG nonsense codons work efficiently in vitro via tRNA, Cell 7: 381–390.PubMedCrossRefGoogle Scholar
  89. Gesteland, R. F., Wills, N., Lewis, J. B., and Grodzicker, T., 1978, Identification of amber and ochre mutants of the human virus Ad2+ND1, Proc. Natl. Acad. Sci. U.S.A. 74: 4567–4571.CrossRefGoogle Scholar
  90. Ghosh, K., and Ghosh, H. P., 1970, Role of modified nucleoside adjacent to 3’-end of anticodon in codon—anticodon interaction. Biochem. Biophys. Res. Commun. 40: 135–143.PubMedCrossRefGoogle Scholar
  91. Ghysen, A., and Pironio, M., 1972, Relationship between the N function of bacteriophage X and host RNA polymerase, J. Mol. Biol. 65: 259–272.PubMedCrossRefGoogle Scholar
  92. Gilbert, W., and Maxam, A., 1973, The nucleotide sequence of the lac operator. Proc. Natl. Acad. Sci. U.S.A. 70: 3581–3584.PubMedCrossRefGoogle Scholar
  93. Gilmore, R. A., Stewart, J. W., and Sherman, F., 1971, Amino acid replacements resulting from super- suppression of nonsense mutants of iso-i-cytochrome c from yeast, J. Mol. Biol. 61: 157–173.PubMedCrossRefGoogle Scholar
  94. Goodman, H. M., Olson, M. V., and Hall, B. D., 1977, Nucleotide sequence of a mutant eukaryotic gene: The yeast tyrosine-inserting ochre suppressor SUP4-O, Proc. Natl. Acad. Sci. U.S.A. 74: 54535457.Google Scholar
  95. Gopinathan, K. P., and Garen, A., 1970, A leucyl-transfer RNA by the amber suppressor gene Su6 +, J. Mol. Biol. 47: 393–401.PubMedCrossRefGoogle Scholar
  96. Gorini, L., 1970, Informational suppression, Annu. Rev. Genet. 4: 107–134.CrossRefGoogle Scholar
  97. Gorini, L., 1971, Ribosomal discrimination of tRNAs, Nature New Biol. 234: 261–264.PubMedGoogle Scholar
  98. Gorini, L., 1974, Streptomycin and misreading of the genetic code, in: Ribosomes ( M. Nomura, A. Tissières, and P. Lengyel, eds.), pp. 791–803, Cold Spring Harbor Lab., Cold Spring Harbor, New York.Google Scholar
  99. Grosjean, H., Still, D. G., and Crothers, D. M., 1976, Studies of the complex between transfer RNAs with complementary anticodons. I. Origins of enhanced affinity between complementary triplets, J. Mol. Biol. 103: 499–519.PubMedCrossRefGoogle Scholar
  100. Grosjean, H. J., de Henau, S., and Crothers, D. M., 1978, On the physical basis for ambiguity in genetic coding interactions, Proc. Natl. Acad. Sci. U.S.A. 75: 610–614.PubMedCrossRefGoogle Scholar
  101. Hagenbüchle, O., Santer, M., Steitz, J. A., and Mans, R. J., 1978, Conservation of the primary structure at the 3’-end of 18S rRNA from eucaryotic cells, Cell 13: 551–563.PubMedCrossRefGoogle Scholar
  102. Hartman, P. E., and Roth, J. R., 1973, Mechanisms of suppression, Adv. Genet. 17: 1–105.PubMedCrossRefGoogle Scholar
  103. Hawthorne, D. C., 1976, UGA mutations and UGA suppressors in yeast. Biochimie 58: 179–182.PubMedCrossRefGoogle Scholar
  104. Hawthorne, D. C., and Leupold, U., 1974, Suppressors in yeast, Curr. Top. Microbiol. Immunol. 64: 1–47.PubMedCrossRefGoogle Scholar
  105. Hayashi, H., and Soll, D., 1971, Purification of an E. coli leucine suppressor transfer RNA and its aminoacylation by the homologous leucyl-tRNA synthetase, J. Biol. Chem. 246: 4951–4954.PubMedGoogle Scholar
  106. Hill, C. W., 1975, Informational suppression of missense mutations, Cell 6: 419–427.CrossRefGoogle Scholar
  107. Hiraga, S., and Yanofsky, C., 1972, Hyperlabile messenger RNA in polar mutants of the tryptophan operon of E. coli, J. Mol. Biol. 72: 103–110.PubMedCrossRefGoogle Scholar
  108. Hirsh, D., 1971, Tryptophan transfer RNA as the UGA suppressor, J. Mol. Biol. 58: 439–458.PubMedCrossRefGoogle Scholar
  109. Hirsh, D., and Gold, L., 1971, Translation of the UGA triplet in vitro by tryptophan transfer RNAs, J. Mol. Biol. 58: 459–468.PubMedCrossRefGoogle Scholar
  110. Hofstetter, H., Monstein, H. J., and Weissmann, C., 1974, The readthrough protein Al is required for in vitro reconstitution of infectious QB particles, Experimentia 30: 687.Google Scholar
  111. Holmes, W. M., Goldman, E., Miner, T. A., and Hatfield, G. W., 1977, Differential utilization of leucyltRNAs by Escherichia coli, Proc. Natl. Acad. Sci. U.S.A. 74: 1393–1397.PubMedCrossRefGoogle Scholar
  112. Hooper, M. L., Russell, R. L., and Smith, J. D., 1972, Mischarging in mutant tyrosine transfer RNAs, FEBS Lett. 22: 149–155.PubMedCrossRefGoogle Scholar
  113. Hsiang, M. W., Cole, R. D., Takeda, Y., and Echols, H., 1977, Amino acid sequence of Cro regulatory protein of bacteriophage lambda, Nature 270: 275–277.PubMedCrossRefGoogle Scholar
  114. Humayun, Z., 1977, DNA sequence at the end of the C1 gene in bacteriophage A, Nucleic Acids Res. 4: 2137–2144.PubMedCrossRefGoogle Scholar
  115. Ikemura, T., Shimura, Y., Sakano, H., and Ozeki, H., 1975, Precursor molecules of Escherichia coli transfer RNAs accumulated in a temperature-sensitive mutant, J. Mol. Biol. 96: 69–86.PubMedCrossRefGoogle Scholar
  116. Ilgen, C., Kirk, L. L., and Carbon, J., 1976, Isolation and characterization of large transfer ribonucleic acid precursors from Escherichia coli, J. Biol. Chem. 251: 922–929.PubMedGoogle Scholar
  117. Inoko, H., and Imai, M., 1976, Isolation and genetic characterization of the nitA mutants of Escherichia coli affecting the termination factor rho, Mol. Gen. Genet. 143: 211–221.PubMedCrossRefGoogle Scholar
  118. Inoko, H., Shigesada, K., and Imai, M., 1977, Isolation and characterization of conditional-lethal rho mutants of Escherichia coli, Proc. Natl. Acad. Sci. U.S.A. 74: 1162–1166.PubMedCrossRefGoogle Scholar
  119. Inokuchi, H., Yamao, F., Yamagishi, H., Sakano, H., and Ozeki, H., 1975, Isolation of mischarging mutants of suppressor tRNA by using the transducing phages carrying sut and sut in E. coli, Genet. Soc. (Can.) Bull. 6: 37.Google Scholar
  120. Jacobson, K. B., 1971, Role of an isoacceptor transfer ribonucleic acid as an enzyme inhibitor: Effect on tryptophan pyrrolase of Drosophila, Nature New Biol. 231: 17–19.PubMedCrossRefGoogle Scholar
  121. Jeffreys, A. J., and Flavell, R. A., 1977, The rabbit ß-globin gene contains a large insert in the coding sequence, Cell 12: 1097–1108.PubMedCrossRefGoogle Scholar
  122. Jukes, T. H., 1977, How many anticodons? Science 198: 319–320.PubMedCrossRefGoogle Scholar
  123. Kao, S.-H., and McClain, W. H., 1977, UGA suppressor of bacteriophage T4 associated with arginine transfer RNA, J. Biol. Chem. 252: 8254–8257.PubMedGoogle Scholar
  124. Kaufmann, G., and Littauer, U. Z., 1974, Covalent joining of phenylalanine transfer ribonucleic acid half-molecules by T4 RNA ligase, Proc. Natl. Acad. Sci. U.S.A. 71: 3741–3745.PubMedCrossRefGoogle Scholar
  125. Kiger, J. A., Jr., 1974, Participation of Drosophila tRNA in protein synthesis in an E. coli protein synthesizing system, Nucleic Acids Res. 1: 1269–1277.PubMedCrossRefGoogle Scholar
  126. Kimball, M. E., and Söll, D. G., 1974, The phenylalanine tRNA from Mycoplasma sp. (Kid): A tRNA lacking hypermodified nucleosides functional in protein synthesis, Nucleic Acids Res. 1: 1713–1720.PubMedCrossRefGoogle Scholar
  127. Kohli, J., Kwong, T. C., Altruda, F., Söll, D., and Wahl, G., 1978, Nonsense suppression in S. pombe: The efficient suppressors recognize UGA, J. Biol. Chem. (in press).Google Scholar
  128. Korn, L. J., and Yanofsky, C., 1976a, Polarity suppressors increase expression of the wild type tryptophan operon of Escherichia coli, J. Mol. Biol. 103: 395–409.PubMedCrossRefGoogle Scholar
  129. Korn, L. J., and Yanofsky, C., 1976b, Polarity suppressors defective in transcription termination at the attenuator of the tryptophan operon of Escherichia coli have altered rho factors, J. Mol. Biol. 106: 231–241.PubMedCrossRefGoogle Scholar
  130. Körner, A., Feinstein, S. I., and Altman, S., 1978, tRNA-mediated suppression, in: Transfer RNA (S. Altman, ed.), pp. 105–135. MIT Press, Cambridge, Massachusetts.Google Scholar
  131. Koski, R. A., Bothwell, A. L. M., and Altman, S., 1976, Identification of a ribonuclease P-like activity from human KB cells, Cell 9: 101–116.PubMedCrossRefGoogle Scholar
  132. Kuchino, Y., Seno, T., and Nishimura, S., 1971, Fragmented E. coli methionine tRNAf as methyl acceptor for rat liver tRNA methylase: Alteration of the site of methylation by the conformational change of tRNA structure resulting from fragmentation, Biochem. Biophys. Res. Commun. 43: 476–483.PubMedCrossRefGoogle Scholar
  133. Kurland, C. G., 1977, Structure and function of the bacterial ribosome, Annu. Rev. Biochem. 46: 173–200.PubMedCrossRefGoogle Scholar
  134. Kurland, C. G., Rigler, R., Ehrenberg, M., and Blomberg, C., 1975, Allosteric mechanism for codondependent tRNA selection on ribosomes, Proc. Natl. Acad. Sci. U.S.A. 72: 4248–4251.PubMedCrossRefGoogle Scholar
  135. Lagerkvist, U., 1978, Two out of three: An alternative method for codon reading, Proc. Natl. Acad. Sci. U.S.A. 75: 1759–1762.PubMedCrossRefGoogle Scholar
  136. Last, J. A., and Anderson, W. F., 1976, Purification and properties of bacteriophage T4-induced RNA ligase, Arch. Biochem. Biophys. 174: 167–176.PubMedCrossRefGoogle Scholar
  137. Liebman, S. W., and Sherman, F., 1976, Inhibition and growth by amber suppressors in yeast, Genetics 82: 233–249.PubMedGoogle Scholar
  138. Liebman, S. W., Stewart, J. W., and Sherman, F., 1975, Serine substitution caused by an ochre suppressor in yeast, J. Mol. Biol. 94: 595–610.PubMedCrossRefGoogle Scholar
  139. Liebman, S. W., Sherman, F., and Stewart, J. W., 1976, Isolation and characterization of amber suppressors in yeast, Genetics 82: 251–272.PubMedGoogle Scholar
  140. Liebman, S. W., Stewart, J. W., Parker, J. H., and Sherman, F., 1977, Leucine insertion caused by a yeast amber suppressor, J. Mol. Biol. 109: 13–22.PubMedCrossRefGoogle Scholar
  141. Lindsley, D. L., and Grell, E. H., 1968, Genetic variations of Drosophila melanogaster, Carnegie Institute Washington Publication No. 627.Google Scholar
  142. Litwack, M., and Peterkofsky, A., 1971, Transfer ribonucleic acid deficient in N6-(O2-isopentenyl)adenosine due to mevalonic acid limitation, Biochemistry 10: 994–1001.PubMedCrossRefGoogle Scholar
  143. Loftfield, R B., and Vanderjagt, D., 1972, The frequency of errors in protein biosynthesis, Biochem. J. 128: 1353–1356.PubMedGoogle Scholar
  144. Lu, P., and Rich, A., 1971, The nature of the polypeptide chain termination signal, J. Mol. Biol. 58: 513–531.PubMedCrossRefGoogle Scholar
  145. Lu, P., Jarema, M., Mosser, K., and Daniel, W. E., Jr., 1976, lac repressor: 3-Fluorotyrosine substitution for nuclear magnetic resonance studies, Proc. Natl. Acad. Sci. U.S.A. 73: 3471–3475.Google Scholar
  146. Lund, E., and Dahlberg, J. E., 1977, Spacer transfer RNAs in ribosomal RNA transcripts of E. coli: Processing of 30S ribosomal RNA in vitro, Cell 11: 247–262.PubMedCrossRefGoogle Scholar
  147. Lund, E., Dahlberg, J. E., Lindahl, L., Jaskunas, S. R., Dennis, P. P., and Nomura, M., 1976, Transfer RNA genes between 16S and 23S rRNA genes in rRNA transcription units of E. coli, Cell 7: 165–177.PubMedCrossRefGoogle Scholar
  148. Marinus, M. G., Morris, N. R., Söll, D., and Kwong, T. C., 1975, Isolation and partial characterization of three Escherichia coli mutants with altered transfer ribonucleic acid methylases, J. Bacteriol. 122: 257–265.PubMedGoogle Scholar
  149. Martin, J., and Webster, R. E., 1975, The in vitro translation of a terminating signal by a single Escherichia coli ribosome, J. Biol. Chem. 250: 8132–8139.PubMedGoogle Scholar
  150. Maxam, A. M., and Gilbert, W., 1977, A new method for sequencing DNA, Proc. Natl. Acad. Sci. U.S.A. 74: 560–564.PubMedCrossRefGoogle Scholar
  151. McClain, W. H., 1977, Seven terminal steps in a biosynthetic pathway leading from DNA to transfer RNA, Acc. Chem. Res. 10: 418–425.CrossRefGoogle Scholar
  152. McClain, W. H., and Seidman, J. G., 1975, Genetic perturbations that reveal tertiary conformation of tRNA precursor molecules, Nature 257: 106–110.PubMedCrossRefGoogle Scholar
  153. McClain, W. H., Guthrie, C., and Barrell, B. G., 1972, Eight transfer RNAs induced by infection of Escherichia coli with bacteriophage T4, Proc. Natl. Acad. Sci. U.S.A. 69: 3703–3707.PubMedCrossRefGoogle Scholar
  154. McCloskey, J. A., and Nishimura, S., 1977, Modified nucleosides in tRNA, Acc. Chem. Res. 10: 403–410.CrossRefGoogle Scholar
  155. McCready, S. J., Cox, B. S., and McLaughlin, C. S., 1977, The extrachromosomal control of nonsense suppression in yeast: An analysis of the elimination of [psi+] in the presence of a nuclear gene PNM -, Mol. Gen. Genet. 150: 265–270.PubMedCrossRefGoogle Scholar
  156. Michels, C. A., and Zipser, D., 1969, Mapping of polypeptide reinitiation sites within the ß-galactosidase structural gene, J. Mol. Biol. 41: 341–347.PubMedCrossRefGoogle Scholar
  157. Miller, J. H., Coulondre, C., Schmeissner, U., Schmitz, A,, and Lu, P., 1975, The use of suppressed nonsense mutations to generate altered lac repressor molecules, in: Protein—Ligand Interactions (H. Sund and G. Blauer, eds.), pp. 238–252, de Gruyter, Berlin.Google Scholar
  158. Miller, J. H., Ganem, D., Lu, P., and Schmitz, A., 1977, Genetic studies of the lac repressor. I. Correlation of mutational sites with specific amino acid residues: Construction of a colinear gene—protein map, J. Mol. Biol. 109: 275–301.PubMedCrossRefGoogle Scholar
  159. Min Jou, W., Haegeman, G., Ysebaert, M., and Fiers, W., 1972, Nucleotide sequences of the gene coding for the bacteriophage MS2 coat protein, Nature 237: 82–88.CrossRefGoogle Scholar
  160. Mischke, D., Kloetzel, P., and Schwochau, M., 1975, Tryptophan pyrrolase activity regulation in Drosophila: Role of an isoacceptor tRNA unsettled, Nature 255: 79–80.PubMedCrossRefGoogle Scholar
  161. Mitra, S. K., Lustig, F., Akesson, B., Lagerkvist, U., and Strid, L., 1977, Codon—anticodon recognition in the valine codon family, J. Biol. Chem. 252: 471–478.PubMedGoogle Scholar
  162. Morgan, E. A., Ikemura, T., and Nomura, M., 1977, Identification of spacer tRNA genes in individual ribosomal RNA transcription units of Escherichia coli, Proc. Natl. Acad. Sci. U.S.A. 74: 2710--2714.PubMedCrossRefGoogle Scholar
  163. Morse, D. E., and Guertin, M., 1972, Amber suA mutations which relieve polarity, J. Mol. Biol. 63: 605–608.PubMedCrossRefGoogle Scholar
  164. Morse, D. E., and Primakoff, P., 1970, Relief of polarity in E. colt by suA,“ Nature 226: 28–31.Google Scholar
  165. Morse, D. E., and Yanofsky, C., 1969, Polarity and the degradation of mRNA, Nature 224: 329–331.PubMedCrossRefGoogle Scholar
  166. Müller-Hill, B., 1966, Suppressible regulator constitutive mutants of the lactose system in Escherichia coli, J. Mol. Biol. 15: 374–376.PubMedCrossRefGoogle Scholar
  167. Müller-Hill, B., 1975, Lac repressor and lac operator, Prog. Biophys. Mol. Biol. 30: 227–252.PubMedCrossRefGoogle Scholar
  168. Murgola, E. J., and Yanofsky, C., 1974, Suppression of glutamic acid codons by mutant glycine transfer ribonucleic acid, J. Bacteriol. 117: 439–443.PubMedGoogle Scholar
  169. Nagata, T., and Horiuchi, T., 1973, Isolation and characterization of a temperature-sensitive amber suppressor mutant of Escherichia colt K12, Mol. Gen. Genet. 123: 77–88.PubMedCrossRefGoogle Scholar
  170. Newton, W. A., Beckwith, J. P., Zipser, D., and Brenner, S., 1965, Nonsense mutants and polarity in the lac operon of Escherichia coli, J. Mol. Biol. 14: 290–296.PubMedCrossRefGoogle Scholar
  171. Nichols, J. L., 1970, Nucleotide sequence from the polypeptide chain termination region of the coat protein cistron in bacteriophage R17 RNA, Nature 225: 147–151.PubMedCrossRefGoogle Scholar
  172. Nichols, J. L., and Robertson, H. D., 1971, Sequences of RNA fragments from the bacteriophage f2 coat protein cistron which differ from their R17 counterparts, Biochim. Biophys. Acta 228: 676–681.PubMedGoogle Scholar
  173. Ninio, J., 1974, A semi-quantitative treatment of missense and nonsense suppression in the strA and ram ribosomal mutants of Escherichia coli: Evaluation of some molecular parameters of translation in vivo, J. Mol. Biol. 84: 297–313.PubMedCrossRefGoogle Scholar
  174. Nomura, M., Morgan, E. A., and Jaskunas, S. R., 1977, Genetics of bacterial ribosomes, Annu. Rev. Genet. 11: 297–347.PubMedCrossRefGoogle Scholar
  175. Oakden, K. M., and Lane, B. G., 1976, Wheat embryo ribonucleates. VI. Comparison of the 3’-hydroxyl termini in “rapidly labelled” RNA from metabolizing wheat embryos with the corresponding termini in ribosomal RNA from differentiating embryos of wheat, barley, corn, and pea, Can. J. Biochem. 54: 261–271.PubMedCrossRefGoogle Scholar
  176. Oeschger, M. P., and Woods, S. L., 1976, A temperature-sensitive suppressor enabling the manipulation of the level of individual proteins in intact cells, Cell 7: 205–212.PubMedCrossRefGoogle Scholar
  177. Ohlsson, B. M., Strigini, P. F., and Beckwith, J. R., 1968, Allelic amber and ochre suppressors, J. Mol. Biol. 36: 209–218.PubMedCrossRefGoogle Scholar
  178. Olson, M. V., Montgomery, D. L., Hopper, A. K., Page, G. S., Horodyski, F., and Hall, B. D., 1977, Molecular characterization of the tyrosine tRNA genes of yeast, Nature 267: 639–641.PubMedCrossRefGoogle Scholar
  179. Orgel, L. E., 1972, Possible step in the origin of the genetic code, Isr. J. Chem. 10: 287–292.Google Scholar
  180. Ozaki, M., Mizushima, S., and Nomura, M., 1969, Identification and functional characterization of the protein controlled by the streptomycin-resistant locus in E. coli, Nature 222: 333–339.PubMedCrossRefGoogle Scholar
  181. Pan, J., Reddy, V. B., Thimmappaya, B., and Weissman, S. M., 1977, Nucleotide sequence of the gene for the major structural protein of SV40 virus, Nucleic Acids Res. 4: 2539–2548.PubMedCrossRefGoogle Scholar
  182. Pelham, R. B., and Jackson, R. J., 1976, An efficient mRNA-dependent translation system from reticulocyte lysates, Eur. J. Biochem. 67: 247–256.PubMedCrossRefGoogle Scholar
  183. Person, S., and Osborn, M., 1968, The conversion of amber suppressors to ochre suppressors, Proc. Natl. Acad. Sci. U.S.A. 60: 1030–1037.PubMedCrossRefGoogle Scholar
  184. Philipson, L., Andersson, P., Olshevsky, U., Weinberg, R., Baltimore, D., and Gesteland, R., 1978, Translation of MuLV and MSV RNAs in nuclease-treated reticulocyte extracts: Enhancement of the gag-pol polypeptide with yeast suppressor tRNA, Cell 13: 189–199.PubMedCrossRefGoogle Scholar
  185. Pieczenik, G., 1972, Ph.D. Thesis, New York University, New York City.Google Scholar
  186. Piepersberg, W., Böck, A., and Wittmann, H. G., 1975, Effect of different mutations in ribosomal protein S5 of Escherichia coli on translational fidelity, Mol. Gen. Genet. 140: 91–100.PubMedCrossRefGoogle Scholar
  187. Piper, P. W., Wasserstein, M., Engbaek, F., Kaltoft, K., Celis, J. E., Zeuthen, J., Liebman, S., and Sherman, F., 1976, Nonsense suppressors of Saccharomyces cerevisiae can be generated by mutation of the tyrosine tRNA anticodon, Nature 262: 757–761.PubMedCrossRefGoogle Scholar
  188. Platt, T., and Yanofsky, C., 1975, An intercistronic region and ribosome-binding site in bacterial messenger RNA, Proc. Natl. Acad. Sci. U.S.A. 72: 2399–2403.PubMedCrossRefGoogle Scholar
  189. Platt, T., Files, J. G., and Weber, K., 1973, lac repressor. Specific proteolytic destruction of the NH2-terminal region and loss of the deoxyribonucleic acid-binding activity, J. Biol. Chem. 248: 110–121.Google Scholar
  190. Pope, W. T., and Reeves, R. H., 1978a, Purification of the supK methylase, J. Bacteriol. (in press).Google Scholar
  191. Pope, W. T., Brown, A., and Reeves, R. H., 1978b, The identification of the tRNA substrates for the supK tRNA methylase, Nucleic Acids Res. 5: 1041–1057.PubMedCrossRefGoogle Scholar
  192. Proudfoot, N. J., 1977, Complete 3’ noncoding region sequences of rabbit and human ß-globin messenger RNAs, Cell 10: 559–570.PubMedCrossRefGoogle Scholar
  193. Proudfoot, N. J., and Longley, J. I„ 1976, The 3’ terminal sequences of human a and ß globin messenger RNAs: Comparison with rabbit globin messenger RNA, Cell 9: 733–746.PubMedCrossRefGoogle Scholar
  194. Proudfoot, N. J., Gillam, S., Smith, M., and Longley, J., 1977, Nucleotide sequence of the 3’ terminal third of rabbit a-globin messenger RNA: Comparison with human a-globin messenger RNA, Cell 11: 807–818.PubMedCrossRefGoogle Scholar
  195. Ratliff, J. C., and Caskey, C. T., 1977, Immunologic evidence for structural homology between the release factors of Escherichia coli, Arch. Biochem. Biophys. 181: 671–677.PubMedCrossRefGoogle Scholar
  196. Ratner, D., 1976a, Evidence that mutations in the suA polarity suppressing gene directly affect termination factor rho, Nature 259: 151–153.PubMedCrossRefGoogle Scholar
  197. Ratner, D., 1976b, The rho gene of E. coli maps at suA, in: RNA Polymerase ( R. Losick and M. Chamberlin, eds.), pp. 645–655, Cold Spring Harbor Lab., Cold Spring Harbor, New York.Google Scholar
  198. Reeves, R., and Roth, J. R., 1971, A recessive UGA suppressor, J. Mol. Biol. 56: 523–533.PubMedCrossRefGoogle Scholar
  199. Remaut, E., and Fiers, W., 1972, Studies on the bacteriophage MS2 XVI. The termination signal of the A protein cistron, J. Mod. Biol. 71: 243–261.CrossRefGoogle Scholar
  200. Rich, A., and Schimmel, P. R., 1977, Structural organization of complexes of transfer RNAs with aminoacyl transfer RNA synthetase, Nucleic Acids Res. 5: 1649–1665.CrossRefGoogle Scholar
  201. Richardson, J. P., Grimley, C., and Lowery, C., 1975, Transcription termination factor rho activity is altered in Escherichia coli with suA gene mutations, Proc. Natl. Acad. Sci. U.S.A. 72: 1725–1733.PubMedCrossRefGoogle Scholar
  202. Riddle, D., and Carbon, J., 1973, A nucleotide addition in the anticodon of a glycine transfer RNA, Nature New Biol. 242: 230–234.PubMedGoogle Scholar
  203. Riddle, D., and Roth, J., 1972a, Frameshift suppressors. II. Genetic mapping and dominance studies, J. Mol. Biol. 66: 483–493.PubMedCrossRefGoogle Scholar
  204. Riddle, D., and Roth, J., 1972b, Frameshift suppressors. III. Effects of suppressor mutations on transfer RNA, J. Mol. Biol. 66: 495–506.PubMedCrossRefGoogle Scholar
  205. Ritossa, F. M., Atwood, K. C., and Spiegelman, S., 1966, On the redundancy of DNA complementary to amino acid transfer RNA and its absence from the nucleolar organizer region of Drosophila melanogaster, Genetics 54: 663–676.PubMedGoogle Scholar
  206. Riyasaty, S., and Atkins, J., 1968, External suppression of a frameshift mutant in Salmonella, J. Mol. Biol. 34: 541–557.PubMedCrossRefGoogle Scholar
  207. Roberts, J. W., 1969, Termination factor for RNA synthesis, Nature 224: 1168–1174.PubMedCrossRefGoogle Scholar
  208. Roberts, J. W., and Carbon, J., 1974, Molecular mechanism for missense suppression in E. coli, Nature 250: 412–414.PubMedCrossRefGoogle Scholar
  209. Roberts, T. R., Shimatake, H., Brady, C., and Rosenberg, M., 1977, Sequence of cro gene of bacteriophage lambda, Nature 270: 274–275.PubMedCrossRefGoogle Scholar
  210. Rosenbaum, N., and Gefter, M. L., 1972, Q2-Isopentenylpyrophosphate:transfer ribonucleic acid Azisopentenyltransferase from Escherichia coli, J. Biol. Chem. 247: 5675–5680.PubMedGoogle Scholar
  211. Rosset, R., and Gorini, L., 1969, A ribosomal ambiguity mutation, J. Mol. Biol. 39: 95–112.PubMedCrossRefGoogle Scholar
  212. Roth, J. R., 1974, Frameshift mutations, Annu. Rev. Genet. 8: 319–346.PubMedCrossRefGoogle Scholar
  213. Sadler, J., and Novick, A., 1965, The properties of repressor and the kinetics of its action, J. Mol. Biol. 12: 305–327.PubMedCrossRefGoogle Scholar
  214. Sakano, H., and Shimura, Y., 1975, Sequential processing of precursor tRNA molecules in Escherichia coli, Proc. Natl. Acad. Sci. U.S.A. 72: 3369–3373.PubMedCrossRefGoogle Scholar
  215. Sakano, H., Yamada, S., Ikemura, T., Shimura, Y., and Ozeki, H., 1974, Temperature sensitive mutants of Escherichia cou for tRNA synthesis, Nucleic Acids Res. 1: 355–371.PubMedCrossRefGoogle Scholar
  216. Salser, W., 1969, The influence of the reading context upon the suppression of nonsense codons, Mol. Gen. Genet. 105: 125–130.PubMedCrossRefGoogle Scholar
  217. Salser, W., Fluck, M., and Epstein, R., 1969, The influence of the reading context upon the suppression of nonsense codons. III. Cold Spring Harbor Symp. Quant. Biol. 34: 513–520.PubMedCrossRefGoogle Scholar
  218. Sanger, F., Air, G. M., Barrell, B. G., Brown, N. L., Coulson, A. R., Fiddes, J. C., Hutchison, C. A., III, Slocombe, P. M., and Smith, M., 1977a. Nucleotide sequence of bacteriophage ¢X174 DNA, Nature 265: 687–695.PubMedCrossRefGoogle Scholar
  219. Sanger, F., Nicklen, S., and Coulson, A. R., 1977b, DNA sequencing with chain terminating inhibitors, Proc. Natl. Acad. Sci. U.S.A. 74: 5463–5467.PubMedCrossRefGoogle Scholar
  220. Sarabhai, A., and Brenner, S., 1967, A mutant which reinitiates the polypeptide chain after chain termination, J. Mol. Biol. 27: 145–162.PubMedCrossRefGoogle Scholar
  221. Schedl, P., and Primakoff, P., 1973, Mutants of Escherichia cou thermosensitive for the synthesis of transfer RNA, Proc. Natl. Acad. Sci. U.S.A. 70: 2091–2095.PubMedCrossRefGoogle Scholar
  222. Schlegel, R., and Rechsteiner, M. C., 1975, Microinjection of thymidine kinase and bovine serum albumin into mammalian cells by fusion with red blood cells, Cell 5: 371–379.PubMedCrossRefGoogle Scholar
  223. Schmeissner, U., Ganem, D., and Miller, J. H., 1977, Genetic studies of the lac repressor. II. Fine structure deletion map of the lac I gene, and its correlation with the physical map, J. Mol. Biol. 109: 303–326.PubMedCrossRefGoogle Scholar
  224. Schmidt, F. J., Seidman, J. G., and Bock, R. M., 1976, Transfer ribonucleic acid biosynthesis. Substrate specificity of ribonuclease P, J. Biol. Chem. 251: 2440–2445.PubMedGoogle Scholar
  225. Schmitz, A., Schmeissner, U., Miller, J. H., and Lu, P., 1976, Mutations affecting the quaternary structure of the lac repressor, J. Biol. Chem. 251: 3359–3366.PubMedGoogle Scholar
  226. Schweizer, E., Mackechnie, C., and Halvorson, H. O., 1968, The redundancy of ribosomal and transfer RNA genes in Saccharomyces cerevisiae, J. Mol. Biol. 40: 261–277.CrossRefGoogle Scholar
  227. Scolnick, E. M., and Caskey, C. T., 1969, Peptide chain termination. V. The role of release factors in mRNA terminator codon recognition, Proc. Natl. Acad. Sci. U.S.A. 64: 1235–1241.PubMedCrossRefGoogle Scholar
  228. Scolnick, E., Tompkins, R., Caskey, T., and Nirenberg, M., 1968, Release factors differing in specificity for terminator codons, Proc. Natl. Acad. Sci. U.S.A. 61: 768–774.PubMedCrossRefGoogle Scholar
  229. Seeburg, P. H., Shine, J., Martial, J. A., Ullrich, A., Baxter, J. D., and Goodman, H. M., 1977, Nucleotide sequence of part of the gene for human chorionic somatomammotropin: Purification of DNA complementary to predominant mRNA species, Cell 12: 157–165.PubMedCrossRefGoogle Scholar
  230. Segawa, T., and Imamoto, F., 1974, Diversity of regulation of genetic transcription. II. Specific relaxation of polarity in read-through transcription of the translocated trp operon in bacteriophage lambda trp, J. Mol. Biol. 87: 741–754.PubMedCrossRefGoogle Scholar
  231. Seidman, J. G., Comer, M. M., and McClain, W. H., 1974, Nucleotide alterations in the bacteriophage T4 glutamine transfer RNA that affect ochre suppressor activity, J. Mol. Biol. 90: 677–689.PubMedCrossRefGoogle Scholar
  232. Sherman, F., Liebman, S. W., Stewart, J. W., and Jackson, M., 1973, Tyrosine substitutions resulting from suppression of amber mutants of iso-l-cytochrome c in yeast, J. Mol. Biol. 78: 157–168.PubMedCrossRefGoogle Scholar
  233. Shershneva, L. D., Venkstern, T. V., and Bayev, A. A., 1971, A study of tRNA methylases by the dissected molecule method, FEBS Lett. 14: 297–298.PubMedCrossRefGoogle Scholar
  234. Shimura, Y., Aono, H., Ozeki, H., Sarabhai, A., Lamfrom, H., and Abelson, J., 1972, Mutant tyrosine tRNA of altered amino acid specificity, FEBS Lett. 22: 144–148.PubMedCrossRefGoogle Scholar
  235. Shine, J., and Dalgarno, L., 1974, The 3’-terminal sequence of Escherichia cob 16S ribosomal RNA: Complementarity to nonsense triplets and ribosome binding sites, Proc. Natl. Acad. Sci. U.S.A. 71: 1342–1346.PubMedCrossRefGoogle Scholar
  236. Shine, J., and Dalgarno, L., 1975a, Determinant of cistron specificity in bacterial ribosomes, Nature 254: 34–38.PubMedCrossRefGoogle Scholar
  237. Shine, J., and Dalgarno, L., 1975b, Terminal sequence analysis of bacterial ribosomal RNA. Correlation between the 3’-terminal polypyrimidine sequence of 16S RNA and translational specificity of the ribosome, Eur. J. Biochem. 57: 221–230.PubMedCrossRefGoogle Scholar
  238. Simoncsits, A., Brownlee, G. G., Brown, R. S., Rubin, J. R., and Guilley, H., 1977, New rapid gel sequencing method for RNA, Nature 269: 833–836.PubMedCrossRefGoogle Scholar
  239. Smith, J. D., 1972, Genetics of transfer RNA, Annu. Rev. Genet. 6: 235–256.PubMedCrossRefGoogle Scholar
  240. Smith, J. D., 1976, Transcription and processing of transfer RNA precursors, Prog. Nucleic Acid Res. Mol. Biol. 16: 25–73.PubMedCrossRefGoogle Scholar
  241. Smith, J. D., and Celis, J. E., 1973, Mutant tyrosine transfer RNA that can be charged with glutamine, Nature New BioL 243: 66–71.PubMedCrossRefGoogle Scholar
  242. Smith, J. D., Abelson, J. N., Clark, B. F. C., Goodman, H. M., and Brenner, S., 1966, Studies on amber suppressor tRNA, Cold Spring Harbor Symp. Quant. Biol. 31: 479–485.PubMedCrossRefGoogle Scholar
  243. Smrt, J., Kemper, W., Caskey, T., and Nirenberg, M., 1970, Template activity of modified terminator codons, J. Biol. Chem. 245: 2753–2757.PubMedGoogle Scholar
  244. Still, D., 1968, Studies on polynucleotides. LXXXV. Partial purification of an amber suppressor tRNA and studies on in vitro suppression, J. Mol. Biol. 34: 175–187.CrossRefGoogle Scholar
  245. Söll, D., and Schimmel, P. R., 1974, Aminoacyl-tRNA synthetases, in: The Enzymes, Vol. X ( P. Boyer, ed.), pp. 489–538, Academic Press, New York.Google Scholar
  246. Söll, D., Cherayil, J., Jones, D. S., Faulkner, R. D., Hampel, A., Bock, R. M., and Khorana, H. G., 1966, sRNA specificity for codon recognition as studied by the ribosomal binding technique, Cold Spring Harbor Symp. Quant. Biol. 31: 51–61.Google Scholar
  247. Soll, L., 1974, Mutational alterations of tryptophan-specific transfer RNA that generate translation suppressors of the UAA, UAG and UGA nonsense codons, J. Mol. Biol. 86: 233–243.PubMedCrossRefGoogle Scholar
  248. Soll, L., and Berg, P., 1969, Recessive lethal nonsense suppressor in Escherichia coli which inserts glutamine, Nature 223: 1340–1342.PubMedCrossRefGoogle Scholar
  249. Sommer, H., Lu, P., and Miller, J. H., 1976, Lac repressor. Fluorescence of the two tryptophans, J. Biol. Chem. 251: 3774–3779.Google Scholar
  250. Sprague, K. U., Steitz, J. A., Grenley, R. M., and Stocking, C. E., 1977, 3’ terminal sequences of 16S rRNA do not explain translational specificity differences between E. coli and B. stearothermophilus ribosomes, Nature 267: 462–465.Google Scholar
  251. Sprinzl, M., Grüter, F., and Gauss, D. H., 1978, Collection of published tRNA sequences, Nucleic Acids Res. 5: 15–27.Google Scholar
  252. Squires, C., Konrad, B., Kirschbaum, J., and Carbon, J., 1973, Three adjacent transfer RNA genes in Escherichia coli, Proc. Natl. Acad. Sci. U.S.A. 70: 438–441.CrossRefGoogle Scholar
  253. Steege, D. A., 1977, 5’ terminal nucleotide sequence of Escherichia coli lactose repressor mRNA: Features of translational initiation and reinitiation sites, Proc. Natl. Acad. Sci. U.S.A. 74: 4163–4167.Google Scholar
  254. Steege, D. A., and Low, B., 1975, Isolation and characterization of lambda transducing bacteriophages for the sut+ (supD-) amber suppressor of Escherichia coli, Bacterial. 122: 120–128.Google Scholar
  255. Summers, W. P., Wagner, M., and Summers, W. C., 1975, Possible peptide chain termination mutants in thymidine kinase gene of a mammalian virus, herpes simplex virus, Proc. NatL Acad. Sci. U.S.A. 72: 4081–4084.PubMedCrossRefGoogle Scholar
  256. Tate, W. P., and Caskey, C. T., 1974, The mechanism of peptide chain termination, Mol. Cell. Biochem. 5: 115–126.PubMedCrossRefGoogle Scholar
  257. Tate, W. P., Beaudet, A. L., and Caskey, C. T., 1973, Influence of guanine nucleotides and elongation factors on interaction of release factors with the ribosome, Proc. Natl. Acad. Sci. U.S.A. 70: 2350–2355.PubMedCrossRefGoogle Scholar
  258. Tate, W. P., Caskey, C. T., and Stöffler, G., 1975, Inhibition of peptide chain termination by antibodies specific for ribosomal proteins, J. Mol. Biol. 93: 375–389.PubMedCrossRefGoogle Scholar
  259. Thuriaux, P., Minet, M., Hofer, F., and Leupold, U., 1975, Genetic analysis of antisuppressor mutants in the fission yeast Schizosaccharomyces pombe, Mol. Gen. Genet. 142: 251–261.Google Scholar
  260. Tompkins, R. K., Scolnick, E. M., and Caskey, C. T., 1970, Peptide chain termination. VII. The ribosomal and release factor requirements for peptide release, Proc. Natl. Acad. Sci. U.S.A. 65: 702–708.PubMedCrossRefGoogle Scholar
  261. Topisirovic, L., Villarroel, R., DeWilde, M., Herzog, A., Cabezón, T., and Bollen, A., 1977, Translational fidelity in Escherichia coli: Contrasting role of neaA and ramA gene products in the ribosome functioning, Mol. Gen. Genet. 151: 89–94.PubMedCrossRefGoogle Scholar
  262. Twardzik, D. R, Grell, E. and Jacobson, K. B., 1971, Mechanism of suppression in Drosophila: A change in tyrosine transfer RNA, J. Mol. Biol. 57: 231–245.PubMedCrossRefGoogle Scholar
  263. Valenzuela, P., Venegas, A., Weinberg, F., Bishop, R., and Rutter, W. J., 1978, Structure of yeast phenylalanine-tRNA genes. An intervening DNA segment within the region coding for the tRNA, Proc. Natl. Acad. Sci. U.S.A. 75: 190–194.PubMedCrossRefGoogle Scholar
  264. Weiner, A. M., and Weber, K., 1973, A single UGA codon functions as a natural termination signal in the coliphage QB coat protein cistron, J. Mol. Biol. 80: 837–855.PubMedCrossRefGoogle Scholar
  265. Weissmann, C., Taniguchi, T., Domingo, E., Sabo, D., and Flavell, R. A., 1977, Site-directed mutagenesis as a tool in genetics, in: 14th Miami Winter Symposium ( J. Schultz and Z. Brada, eds.), pp. 11–36, Academic Press, New York.Google Scholar
  266. Weissenbach, J., Dirheimer, G., Falcoff, R., Sanceau, J., and Falcoff, E., 1977, Yeast tRNA (anticodon U-A-G) translates all six leucine codons in extracts from interferon treated cells, FEBS Lett. 82: 71–76.PubMedCrossRefGoogle Scholar
  267. White, B. N., Tener, G. M., Holden, J., and Suzuki, D. T., 1973, Activity of a transfer RNA modifying enzyme during the development of Drosophila and its relationship to the su(s) locus, J. Mol. Biol. 74: 635–651.PubMedCrossRefGoogle Scholar
  268. Wilson, J. T., de Riel, J. K., Forget, B. G., Marotta, C. A., and Weissman, S. M., 1977, Nucleotide sequence of 3’ untranslated portion of human alpha globin mRNA, Nucleic Acids Res. 4: 2353–2368.PubMedCrossRefGoogle Scholar
  269. Wittmann, H. G., Stöffier, G., Piepersberg, W., Buckel, P., Ruffler, D., and Böck, A., 1974, Altered S5 and S20 ribosomal proteins in revertants of an alanyl-tRNA synthetase mutant of Escherichia coli, Mol. Gen. Genet. 134: 225–236.PubMedCrossRefGoogle Scholar
  270. Wosnick, M. A., and White, B. N., 1977, A doubtful relationship between tyrosine tRNA and suppression of the vermilion mutant in Drosophila, Nucleic Acids Res. 4: 3919–3930.PubMedCrossRefGoogle Scholar
  271. Wu, M., and Davidson, N., 1975, Use of gene 32 protein staining of single-strand polynucleotides for gene mapping by electron microscopy: Application to the 480d3ilvsu+7 system, Proc. Natl. Acad. Sci. U.S.A. 72: 4506–4510.PubMedCrossRefGoogle Scholar
  272. Yahata, H., Ocada, Y., and Tsugita, A., 1970, Adjacent effect on suppression efficiency. II. Study of ochre and amber mutants of T4 phage lysozyme, Mol. Gen. Genet. 106: 208–212.PubMedCrossRefGoogle Scholar
  273. Yaniv, M., Folk, W. R., Berg, P., and Soll, L., 1974, A single modification of a tryptophan-specific transfer RNA permits aminoacylation by glutamine and translation of the codon UAG, J. Mol. Biol. 86: 245–260.CrossRefGoogle Scholar
  274. Yanofsky, C., and Soll, L., 1977, Mutations affecting tRNAT “ and its charging and their effect on regulation of transcription termination at the attenuator of the tryptophan operon, J. Mol. Biol. 113: 663–677.PubMedCrossRefGoogle Scholar
  275. Yates, J. L., Gette, W. R., Furth, M. E., and Nomura, M., 1977, Effects of ribosomal mutations on the read-through of a chain termination signal: Studies on the synthesis of bacteriophage À O gene protein in vitro, Proc. Natl. Acad. Sci. U.S.A. 74: 689–693.PubMedCrossRefGoogle Scholar
  276. Yoshida, M., Takeishi, K., and Ukita, T., 1970, Anticodon structure of a GAA-specific glutamic acid tRNA from yeast, Biochem. Biophys. Res. Commun. 39: 852–857.PubMedCrossRefGoogle Scholar
  277. Yoshida, M., Takeishi, K., and Ukita, T., 1971, Structural studies on a yeast glutamic acid tRNA specific to GAA codon, Biochim. Biophys. Acta 228: 153–166.PubMedGoogle Scholar
  278. Yourno, J., and Tanemura, S., 1970, Restoration of in-phase translation by an unlinked suppressor of a frameshift mutation in Salmonella typhimurium, Nature 225: 422–426.CrossRefGoogle Scholar
  279. Zengel, J. M., Young, R., Dennis, P. P., and Nomura, M., 1977, Role of ribosomal protein S12 in peptide chain elongation: Analysis of pleiotropic, streptomycin-resistant mutants of Escherichia coli, J. Bacteriol. 129: 1320–1329.Google Scholar
  280. Zilberstein, A., Dudock, B., Berissi, H., and Revel, M., 1976, Control of messenger RNA translation by minor species of leucyl-transfer RNA in extracts from interferon-treated L cells, J. Mol. Biol. 108: 43–54.PubMedCrossRefGoogle Scholar
  281. Zimmermann, R. A., Garvin, R. T., and Gorini, L., 1971, Alteration of a 30S ribosomal protein accompanying the ram mutation in Escherichia coli, Proc. Natl. Acad. Sci. U.S.A. 68: 2263–2267.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1979

Authors and Affiliations

  • Deborah A. Steege
    • 1
  • Dieter G. Söll
    • 2
  1. 1.Department of BiochemistryDuke University Medical CenterDurhamUSA
  2. 2.Department of Molecular Biophysics and BiochemistryYale UniversityNew HavenUSA

Personalised recommendations