Skip to main content

The Role of tRNA in Regulation

  • Chapter
Biological Regulation and Development

Part of the book series: Biological Regulation and Development ((BRD,volume 1))

Abstract

tRNA molecules were discovered about 20 years ago and the subsequent clarification of their role in protein biosynthesis developed from two different approaches. One approach, stemming from thermodynamic considerations, led Lipmann (1941) to postulate that amino acids had to be activated before they could be polymerized. Subsequently, Hoagland et al. (1957) discovered the formation of high-energy anhydride bonds between ATP and the carboxyl groups of amino acids. These authors reported that a soluble protein fraction from rat liver catalyzed the exchange of 32P with ATP, a reaction enhanced severalfold by the addition of pure amino acids. This protein fraction was shown to contain an RNA species of low molecular weight, called soluble RNA or sRNA, which binds amino acids and these bound amino acids could be transferred to proteins. Second, from another view, Crick (1958) pointed out that nucleic acids could not form highly specific templates for binding the side chains of the amino acids. Nucleic acids lack both the charges required to bind amino acids and the hydrophobic cavities necessary for interaction with the aliphatic amino acids. Moreover, Crick noted that a particular sequence of bases can provide a highly specific pattern of sites for hydrogen bonding and suggested that each amino acid is combined with a special adaptor,which is in turn capable of forming a definite pattern of hydrogen bonding with a nucleic acid template. It was soon realized that the RNA discovered by Hoagland et al. (1957) could perform just such a function. Subsequent research has shown that sRNA, now known as transfer RNA or tRNA, is the adaptor for amino acids in protein synthesis and that tRNA plays a central role in the transfer of information from DNA to proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allaudeen, M. S., Yang, S. K., and Söll, D., 1972, Leucine tRNA, from hisT mutant of Salmonella typhimurium lacks two pseudouridines, FEBS Lett. 28: 205.

    Article  PubMed  CAS  Google Scholar 

  • Altman, S., Bothwell, A. L. M., and Stark, B. C., 1974, Processing of Escherichia coli tRNATn precursor RNA in vitro, Brookhaven Symp. Biol. 26: 12.

    CAS  Google Scholar 

  • Ames, B. N., and Hartman, P. E., 1963, The histidine operon, Cold Spring Harbor Symp. Quant. Biol. 28: 349.

    Article  CAS  Google Scholar 

  • Anderson, W. F., 1969, The effect of tRNA concentration on the rate of protein synthesis, Proc. Natl. Acad. Sci. U.S.A. 62: 566.

    Article  PubMed  CAS  Google Scholar 

  • Anderson, W. F., and Gilbert, Y. M., 1969, tRNA-dependent translational control of in vitro haemoglobin synthesis, Biochem. Biophys. Res. Commun. 36: 456.

    Article  PubMed  CAS  Google Scholar 

  • Artz, S. W., and Broach, J. R., 1975, Histidine regulation in Salmonella typhimurium: An activatorattenuator model of gene regulation, Proc. Natl. Acad. Sci. U.S.A.. 72: 3453.

    Article  PubMed  CAS  Google Scholar 

  • Beckman, J. S., Johnson, P. F., and Abelson, J., 1977, Cloning of yeast tRNA genes in E. coli, Science 196: 205.

    Article  Google Scholar 

  • Bertrand, K., Korn, L., Lee, F., Platt, T., Squires, C. C., Squires, C., and Yanofsky, C., 1975, New features of the regulation of the tryptophan operon, Science 189: 22.

    Article  PubMed  CAS  Google Scholar 

  • Blasi, F., Barton, R. W., Kovach, J. S., and Goldberger, R. F., 1971, Interaction between the first enzyme for histidine biosynthesis and histidyl-tRNA’°, J. Bacteriol. 106: 508.

    PubMed  CAS  Google Scholar 

  • Blumenthal, T., Saunders, T. A., and Weber, K., 1972, Bacteriophage QB replicase contains the protein biosynthesis elongation factors EFTu and EFTs, Proc. Natl. Acad. Sci. U.S.A.. 69: 1313.

    Article  PubMed  CAS  Google Scholar 

  • Blumenthal, R. M., Lemaux, P. G., Neidhardt, F. C., and Dennis, P. P., 1976, The effects of the rel A gene on the synthesis of aminoacyl-tRNA synthetases and other transcription and translation proteins in Escherichia coli B, Mol. Gen. Genet. 149: 291.

    Article  PubMed  CAS  Google Scholar 

  • Borek, E., and Kerr, S., 1972, Atypical transfer RNA’s and their origin in neoplastic cells, Adv. Cancer Res. 15: 163.

    Article  PubMed  CAS  Google Scholar 

  • Bossi, L., and Cortese, R., 1977, Biosynthesis of tRNA in histidine regulatory mutants of Salmonella typhimurium, Nucleic Acids Res. 4: 1945.

    Article  PubMed  CAS  Google Scholar 

  • Bossi L., Ciampi M.S., and Cortese R., 1978, Characterization of an hisU mutant of Salmonella typhimurium defective in tRNA precursor processing, J. Bacteriol. 134: 612–620.

    PubMed  CAS  Google Scholar 

  • Brenchley, J. E., and Ingraham, J. L., 1973, Characterization of a cold-sensitive hisW mutant of Salmonella typhimurium, J. Bacterial. 114: 528.

    CAS  Google Scholar 

  • Brenchley, J. E., and Williams, L. S., 1975, Transfer RNA involvement in the regulation of enzymes synthesis, Annu. Rev. Microbial. 29: 251.

    Article  CAS  Google Scholar 

  • Brenner, M., and Ames, B. N., 1971, The histidine operon and its regulation, in: Metabolic Pathways, Vol. 5 ( H. J. Vogel, ed.), pp. 349–387, Academic Press, New York.

    Google Scholar 

  • Brenner, M., Lewis, J. A., Strauss, D. S., De Lorenzo, F., and Ames, B. N., 1972, Histidine regulation in Salmonella typhimurium. XIV: Interaction of the histidyl tRNA synthetase with tRNA“, J. Biol. Chem. 247: 4333.

    PubMed  CAS  Google Scholar 

  • Schurch A., Miozzari J., and Hutter R., 1974, Regulation of tryptophan biosynthesis in Saccaromyces cerevisiae: Mode of action of 5-methyl-tryptophan and 5-methyl-tryptophan sensitive mutants, J. Bacteriol. 117: 1131–1140.

    PubMed  CAS  Google Scholar 

  • Bresalier, R. S., Rizzino, A. A., and Freundlich, M., 1975, Reduced maximal levels of derepression of isoleucine—valine and leucine enzymes in hisT mutants of Salmonella typhimurium, Nature 253: 279.

    Article  PubMed  CAS  Google Scholar 

  • Bronson, M. Y., Squires, C., and Yanofsky, C., 1973, Nucleotide sequences from tryptophan mRNA of E. coli: The sequence corresponding to the amino terminal region of the first polypeptide specified by the operon, Proc. Natl. Acad. Sci. U.S.A.. 70: 2335.

    Article  PubMed  CAS  Google Scholar 

  • Calker, D., and Hilse, K., 1974, Properties of isoaccepting tRNAva’ from rabbit recticulocytes: Fractionation and codon recognition, FEBS Lett. 39: 56.

    Article  PubMed  Google Scholar 

  • Carbon, J., Chang, S., and Kirk, L. L., 1974, Clustered tRNA genes in Escherichia coli, transcription and processing, Brookhaven Symp. Biol. 26: 26.

    CAS  Google Scholar 

  • Carsiotis, M., and Jones, R. F., 1974, Cross-pathway regulation: Tryptophan-mediated control of histidine and arginine biosynthetic enzymes in Neurospora crassa, J. Bacteriol. 119: 889.

    PubMed  CAS  Google Scholar 

  • Carsiotis, M., Jones, R. F., and Wesseling, A. C.,1974, Cross-pathway regulations: Histidine-mediated control of histidine, tryptophan and arginine biosynthetic enzymes in Neurospora crassa, J. Bacteriol. 119: 893.

    Google Scholar 

  • Ciampi, M. S., Arena, F., Cortese, R., and Daniel, V., 1977, Biosynthesis of pseudouridine in the in vitro transcribed tRNATY` precursor, FEBS Lett. 77: 75.

    Article  PubMed  CAS  Google Scholar 

  • Clarkson, S. G., and Kurer, V., 1976, Isolation and some properties of DNA coding for tRNAMet from Xenopus laevis, Cell 8: 183.

    Article  PubMed  CAS  Google Scholar 

  • Cortese, R., Kammen, H. O., Spengler, S. H., and Ames, B. N., 1974a, Biosynthesis of pseudouridine in tRNA, J. Biol. Chem. 249: 1103.

    PubMed  CAS  Google Scholar 

  • Cortese, R., Landsberg, R. M., Van der Haar, R. A., Umbarger, H. E., and Ames, B. N., 1974b, Pleiotropy of hisT mutants blocked in pseudouridine synthesis in tRNA: Leucine and isoleucinevaline operons, Proc. Natl. Acad. Sci. U.S.A. 71: 1857.

    Article  PubMed  CAS  Google Scholar 

  • Cozzone, A., and Donini, P., 1973, Turnover of polysomes in amino-acid starved Escherichia coli, J. Mol. Biol. 76: 149.

    Article  PubMed  CAS  Google Scholar 

  • Crick, F. H. C., 1958, On protein synthesis, Symp. Soc. Exp. Biol. 12: 138.

    PubMed  CAS  Google Scholar 

  • Crick, F. H. C., Brenner, S., Klug, A., and Pieczenik, G., 1976, A speculation on the origin of protein synthesis, Origins of Life 7: 389.

    Article  PubMed  CAS  Google Scholar 

  • Dahlberg, J. E., Sawyer, R. C., Taylor, S. M., Faras, A. J., Levinson, W. E., Goodman, H. M., and Bishop, J. M., 1974, Transcription of DNA from the 70S RNA of Rous sarcoma virus. Identification of a specific 4S RNA which serves as primer, J. Virol. 13: 1126.

    PubMed  CAS  Google Scholar 

  • Davidson, J. P., Davis, L., and Williams, L. S., 1977, Control of isoleucine—valine biosynthesis in tRNA ribonucleic acid mutants of Salmonella typhimurium, Fed. Proc. 36: 659 (abstract).

    Google Scholar 

  • Debenham, P., and Travers, A., 1977, Selective inhibition of tRNATn transcription by guanosine 3’diphosphate-5’-diphosphate, Eur. J. Biochem. 72: 515.

    Article  PubMed  CAS  Google Scholar 

  • Deeley, R. G., Goldberger, R. F., Kovach, J., Meyers, M., and Mullinix, K., 1975, Interaction between phosphoribosyltransferase and purified histidine tRNA from wild type Salmonella typhimurium and a derepressed hisT mutant strain, Nucleic Acids Res. 2: 545.

    Article  PubMed  CAS  Google Scholar 

  • Delaney, P., and Siddiqui, M. A. Q., 1976, Changes in in vivo levels of charged tRNA species during development of the posterior silk-gland of Bombix mori, Dev. Biol. 44: 54.

    Article  Google Scholar 

  • Deutch, C. E., Scarpulla, R. C., Sonnenblick. E. B., and Soffer, R. L., 1977, Pleiotropic phenotype of an E. coli mutant lacking leucyl-, phenylalanyl-transfer ribonucleic acid-protein transferase, J. Bacteriol. 129: 544.

    CAS  Google Scholar 

  • Nocera, P. P., Avitabile, A., and Blasi, F., 1975, In vitro transcription of the Escherichia coli his operon primed by dinucleotides. Effect of the first histidine biosynthetic enzyme, J. Biol. Chem. 250: 8376.

    PubMed  Google Scholar 

  • Donini, P., Santonastaso, V., Roche, J., and Cozzone, A. J., 1978, The relationship between guanosine tetraphosphate, polysomes and RNA synthesis in amino acid-starved Escherichia coli, Molec. Biol. Rep. 4: 15–19.

    Article  CAS  Google Scholar 

  • Efstradiatis A., Kafatos, F. C., and Maniatis, T., 1977, The primary structure of rabbit ß-globin mRNA as determined from cloned DNA, Cell 10: 571.

    Article  Google Scholar 

  • Ely, B., 1974, Physiological studies of Salmonella histidine operator—promoter mutants, Genetics 78: 593.

    PubMed  CAS  Google Scholar 

  • Ely, B., Fankhauser, B. D., and Hartman, P. E., 1974, A fine structure map of the Salmonella typhimurium histidine operator—promoter, Genetics 78: 607.

    PubMed  CAS  Google Scholar 

  • Faras, A. J., Dahlberg, J. E., Sawyer, R. C., Harada, F., Taylor, J. M., Levinson, W. E., Bishop, J. M., and Goodman, H. M., 1974, Transcription of DNA from the 70S RNA of Rous sarcoma virus, II: Structure of a 4S RNA primer, J. Virol. 13: 1133.

    Google Scholar 

  • Fario, M., Cascino, A., and Cortese, R., 1977, Regulation of the intracellular concentration of T4 induced tRNA, Mol. Gen. Genet. 155: 61.

    Article  PubMed  CAS  Google Scholar 

  • Farkas, W. R., and Singh, R., 1973, Guanylation of tRNA by cell-free lysate of rabbit reticulocytes, J. Biol. Chem. 248: 7780.

    PubMed  CAS  Google Scholar 

  • Fiers, W., Contreras, R., Duerinck, F., Haegeman, G., Isertant, D., Meviegaert, J., Minion, W., Molemans, F., Rawymackers, A., Van den Berghe, A., Volckaert, G., and Ysebaert, M., 1976, Complete nucleotide sequence of bacteriophage MS2 RNA: Primary and secondary structure of the replicase gene, Nature 260: 500.

    Article  PubMed  CAS  Google Scholar 

  • Fink, G. R., and Roth, J. R., 1968, Histidine regulatory mutants in Salmonella typhimurium, VI. Dominance studies, J. Mol. Biol. 33: 547.

    Article  PubMed  CAS  Google Scholar 

  • Gallant, J., and Lazzarini, R. A., 1976, The strigent control, in: Protein Synthesis. A Series of Advances, Vol. 2 ( E. H. McConkey, ed.), pp. 309–359, Marcel Dekker, New York.

    Google Scholar 

  • Gallant, J., Palmer, C., and Pao, C. C., 1977, Anomalous synthesis of ppGpp in growing cells, Cell 11: 181.

    Article  PubMed  CAS  Google Scholar 

  • Garel, J. P., 1974, Functional adaptation of tRNA populations, J. Theor. Biol. 43: 211.

    Article  PubMed  CAS  Google Scholar 

  • Garel, J. P., 1976, Quantitative adaptation of isoacceptor tRNA’s to mRNA codons of alanine, glycine and serine, Nature 60: 805.

    Article  Google Scholar 

  • Garel, J. P., Mandel, P., Chavancy, G., and Dallie, J., 1970, Functional adaptation of tRNA’s to fibroin biosynthesis in the silk-gland of Bombix mori, FEBS Lett. 7: 327.

    Article  PubMed  CAS  Google Scholar 

  • Gentner, H., and Berg, P., 1971, Occurrence of a glycyl-lipopolysaccharide structure in Escherichia coli and its enzymatic formation form glycyl-tRNA, Fed. Proc. 30: 1218 (abstract).

    Google Scholar 

  • Goldberger, R. F., and Kovach, J. S., 1972, Regulation of histidine biosynthesis in Salmonella typhimurium, Curr. Top. Cell. Regul. 5: 285.

    PubMed  CAS  Google Scholar 

  • Grumberger, D., Weinstein, F. B., and Mushinsky, J. F., 1975, Deficiency of the Y base in a hepatoma phenylalanine tRNA, Nature 253: 66.

    Article  Google Scholar 

  • Grummt, F., and Grummt, I., 1976, Studies on the role of uncharged tRNA in the pleiotypic responses of animal cells, Eur. J. Biochem. 64: 307.

    Article  PubMed  CAS  Google Scholar 

  • Haenni, A. L., Prochiantz, A., Bernard, O., and Chapeville, F., 1973, TYMV valyl-RNA as an amino acid donor in protein biosynthesis, Nature New Biol. 241: 166.

    PubMed  CAS  Google Scholar 

  • Hartwell, L. H., 1974, Saccharomyces cerevisiae cell cycle, Bacteriol. Rev. 38: 164.

    PubMed  CAS  Google Scholar 

  • Haselkorn, R., and Rothman-Denes, L. B., 1973, Protein synthesis, Annu. Rev. Biochem. 42: 397.

    Article  PubMed  CAS  Google Scholar 

  • Haseltine, W. A., and Block, R., 1973, Synthesis of guanosine tetra-and pentaphosphate requires the presence of codon-specific, uncharged tRNA in the acceptor site of ribosome, Proc. Natl. Acad. Sci. U.S.A. 70: 1564.

    Article  PubMed  CAS  Google Scholar 

  • Haseltine, W. A., Block, R., Gilbert, W., and Weber, K., 1972, MSI and MSII made on ribosomes in idling step of protein synthesis, Nature 238: 381.

    Article  PubMed  CAS  Google Scholar 

  • Schurch A., Miozzari J., and Hutter R., 1974, Regulation of tryptophan biosynthesis in Saccaromyces cerevisiae: Mode of action of 5-methyl-tryptophan and 5-methyl-tryptophan sensitive mutants, J. Bacteriol. 117: 1131–1140.

    PubMed  CAS  Google Scholar 

  • Haseltine, W. A., Maxam, A. M., and Gilbert, W., 1977, Rous sarcoma virus genome is terminally redundant. The 5’ sequence, Proc. Natl. Acad. Sci. U.S.A. 74: 989.

    Article  PubMed  CAS  Google Scholar 

  • Hershko, A., Mamont, P., Shields, R., and Tomkins, G. M., 1971, Pleiotypic response, Nature New Biol. 232: 206.

    PubMed  CAS  Google Scholar 

  • Schurch A., Miozzari J., and Hutter R., 1974, Regulation of tryptophan biosynthesis in Saccaromyces cerevisiae: Mode of action of 5-methyl-tryptophan and 5-methyl-tryptophan sensitive mutants, J. Bacteriol. 117: 1131–1140.

    PubMed  CAS  Google Scholar 

  • Hilse, K., and Rudloff, E., 1975, Glutamine cognate codons in rabbit haemoglobin mRNA’s, FEBS Lett. 60: 380.

    Article  PubMed  CAS  Google Scholar 

  • Hirsh, D., 1970, Tryptophan tRNA of E. coli, Nature 228: 57.

    Article  PubMed  CAS  Google Scholar 

  • Hoagland, M. B., Zamecnick, P. C., and Stephenson, M. L., 1957, Intermediate reactions in protein biosynthesis, Biochim. Biophys. Acta 24: 215.

    Article  PubMed  CAS  Google Scholar 

  • Holley, R. W., and Kiernan, J. A., 1974, Control of the initiation of DNA synthesis in 3T3 cells: Low molecular weight nutrients, Proc. Natl. Acad. Sci. U.S.A. 71: 2942.

    Article  PubMed  CAS  Google Scholar 

  • Holley, R. W., Apgar, H., Everett, G. A., Madison, J. T., Marquisec, M., Merrill, S. H., Penswick, J. R., and Zamir, A., 1965, Structure of a ribonucleic acid, Science 147: 1462.

    Article  PubMed  CAS  Google Scholar 

  • Ilgen, C., Kirk, L. L., and Carbon, J., 1976, Isolation and characterization of large tRNA precursors from E. coli, J. Biol. Chem. 251: 922.

    PubMed  CAS  Google Scholar 

  • Johnson, R. C., Vanatta, P. R., and Fresco, J., 1977, Metabolic regulation of aminoacyl-tRNA synthetase biosynthesis in baker’s yeast, J. Biol. Chem. 252: 878.

    PubMed  CAS  Google Scholar 

  • Kan, L. S., Ts’o, P. O. P., Sprinzl, M., Van der Haar, F., and Cramer, F., 1976, PMR studies on the NH-H hydrogen-bonded enol methyl, methylene proton resonances of tRNAPhe and phe-tRNA’, Biophys. J. 16: 1l.

    Google Scholar 

  • Kasai, T., 1974, Regulation of the expression of the histidine operon in Salmonella typhimurium, Nature 249: 523.

    Article  PubMed  CAS  Google Scholar 

  • Schurch A., Miozzari J., and Hutter R., 1974, Regulation of tryptophan biosynthesis in Saccaromyces cerevisiae: Mode of action of 5-methyl-tryptophan and 5-methyl-tryptophan sensitive mutants, J. Bacteriol. 117: 1131–1140.

    PubMed  CAS  Google Scholar 

  • Kim, S. H., 1976, Tridimensional structure of transfer RNA, Prog. Nucleic Acid Res. Mol. Biol. 17: 182.

    Google Scholar 

  • Kim, S. H., Quigley, G. J., Suddath, F. L., McPherson, A., Sneden, D., Kim, J. J., Weinzierl, J., and Rich, A., 1973, Three-dimensional structure of yeast tRNA e: Folding of the polynucleotide chain, Science 179: 285.

    Article  PubMed  CAS  Google Scholar 

  • Kitchingman, G. R., and Fournier, M. J., 1974, Inhibition of posttranscriptional modification in E. coli, Brookhaven Symp. Biol. 26: 44.

    CAS  Google Scholar 

  • Kleeman, J. E., and Parsons, S. M., 1977, Inhibition of histidyl-tRNA-adenosine triphosphate phosphoribosyltransferase complex formation by histidine and by guanosine tetraphosphate, Proc. Natl. Acad. Sci. U.S.A. 74: 1535.

    Article  PubMed  CAS  Google Scholar 

  • Korn, L. J., and Yanofsky, C., 1976, Polarity suppressors increase expression of the wild-type tryptophan operon in E. Coli, J. Mol. Biol. 103: 395.

    Article  PubMed  CAS  Google Scholar 

  • Lee F., and Yanofsky C., 1977, Transcription termination at the trp operon attenuators of Escherichia coli and Salmonella typhimurium: RNA secondary structure and regulation of termination, Proc. Nat. Acad. Sci. USA. 74: 4365–4369.

    Article  PubMed  CAS  Google Scholar 

  • Schurch A., Miozzari J., and Hutter R., 1974, Regulation of tryptophan biosynthesis in Saccaromyces cerevisiae: Mode of action of 5-methyl-tryptophan and 5-methyl-tryptophan sensitive mutants, J. Bacteriol. 117: 1131–1140.

    PubMed  CAS  Google Scholar 

  • Meur, M. A., Gerlinger, P., and Ebel, J. P., 1976, Messenger RNA translation in the presence of homologous and heterologous tRNA, Eur. J. Biochem. 67: 519.

    Article  PubMed  Google Scholar 

  • Lewis, J. A., and Ames, B. N., 1972, Histidine regulation in Salmonella typhimurium. XI. The percentage of tRNAms charged in vivo and its relation to the repression of the histidine operon, J. Mol. Biol. 66: 131.

    Article  PubMed  CAS  Google Scholar 

  • Schurch A., Miozzari J., and Hutter R., 1974, Regulation of tryptophan biosynthesis in Saccaromyces cerevisiae: Mode of action of 5-methyl-tryptophan and 5-methyl-tryptophan sensitive mutants, J. Bacteriol. 117: 1131–1140.

    PubMed  CAS  Google Scholar 

  • Lipmann, F., 1941, The metabolic generation and utilization of phosphate bond energy, Adv. Enzymol. 1: 99.

    CAS  Google Scholar 

  • Litt, M., and Kabat, D., 1972, Studies of tRNA’s and haemoglobin synthesis in sheep reticulocytes, J. Biol. Chem. 247: 6659.

    PubMed  CAS  Google Scholar 

  • Littauer, U. Z., and Inouye, H., 1973, The regulation of tRNA, Annu. Rev. Biochem. 42: 439.

    Article  PubMed  CAS  Google Scholar 

  • McClain, W. H., and Seidman, J. G., 1975, Genetic perturbations that reveal tertiary conformation of tRNA precursor molecules, Nature 257: 106.

    Article  PubMed  CAS  Google Scholar 

  • McLaughlin, C. S., Magee, P. T., and Hartwell, L. H., 1969, Role of isoleucyl-transfer ribonucleic acid synthetase in ribonucleic acid synthesis and enzyme repression in yeast, J. Bacteriol. 100: 579.

    PubMed  CAS  Google Scholar 

  • Meiss, H. K., Brill, W. J., and Magasanik, B., 1969, Genetic control of histidine degradation in Salmonella typhimurium strain LT-2, J. Biol. Chem. 244: 5382.

    PubMed  CAS  Google Scholar 

  • Meyers, M., Blasi, F., Bruni, C. B., Deeley, R. G., Kovach, J. S., Levinthal, M., Mullinix, K. P., Vogel, T., and Goldberger, R. F., 1975, Specific binding of the first enzyme for histidine biosynthesis to the DNA of the histidine operon, Nucleic Acids Res. 2: 2021.

    Article  PubMed  CAS  Google Scholar 

  • Meister, A., 1965, Biochemistry of the Amino Acids, Academic Press, New York.

    Google Scholar 

  • Schurch A., Miozzari J., and Hutter R., 1974, Regulation of tryptophan biosynthesis in Saccaromyces cerevisiae: Mode of action of 5-methyl-tryptophan and 5-methyl-tryptophan sensitive mutants, J. Bacteriol. 117: 1131–1140.

    PubMed  CAS  Google Scholar 

  • Messenguy, F., and Delforge, J., 1976, Role of tRNA in the regulation of several biosynthesis in Saccharomyces cerevisiae, Eur. J. Biochem. 67: 335.

    Article  PubMed  CAS  Google Scholar 

  • Meyers, M., Blasi, F., Bruni, C. B., Deeley, R. G., Kovach, J. S., Levinthal, M., Mullinix, K. P., Vogel, T., and Goldberger, R. F., 1975, Specific binding of the first enzyme for histidine biosynthesis to the DNA of the histidine operon, Nucleic Acids Res. 2: 2021.

    Article  PubMed  CAS  Google Scholar 

  • Meza, L., Araya, A., Leon, G., Kranskoff, M., Siddiqui, M. A. Q., and Garel, J. P., 1977, Specific alaninetRNA species associated with fibroin biosynthesis in the posterior silk-gland of Bombyx mori, FEBS Lett. 77: 255.

    Article  PubMed  CAS  Google Scholar 

  • Morse, D. E., and Morse, N. C. A., 1976, Dual control of the trp operon is mediated by both tryptophanyl-tRNA synthetase and the repressor, J. Mol. Biol. 103: 209.

    Article  PubMed  CAS  Google Scholar 

  • Nazario, M., Kinsey, J. A., and Ahmad, M., 1971, Neurospora mutant deficient in the tryptophanyltRNA synthetase activity, J. Bacterial. 105: 121.

    CAS  Google Scholar 

  • Meyers, M., Blasi, F., Bruni, C. B., Deeley, R. G., Kovach, J. S., Levinthal, M., Mullinix, K. P., Vogel, T., and Goldberger, R. F., 1975, Specific binding of the first enzyme for histidine biosynthesis to the DNA of the histidine operon, Nucleic Acids Res. 2: 2021.

    Article  PubMed  CAS  Google Scholar 

  • Neidhart, F. C., Parker, J., and McKeever, W. G., 1975, Function and regulation of aminoacyl-tRNA synthetases in prokaryotic and eukaryotic cells, Annu. Rev. Microbiol. 29: 215.

    Article  Google Scholar 

  • Nesbitt, J. A., and Lennarz, W. J., 1968, Participation of aminoacyl tRNA in aminoacyl phosphatidylglycerol synthesis, J. Biol. Chem. 243: 3088.

    PubMed  CAS  Google Scholar 

  • Schurch A., Miozzari J., and Hutter R., 1974, Regulation of tryptophan biosynthesis in Saccaromyces cerevisiae: Mode of action of 5-methyl-tryptophan and 5-methyl-tryptophan sensitive mutants, J. Bacteriol. 117: 1131–1140.

    PubMed  CAS  Google Scholar 

  • Okada, H., Horada, F., and Nishimura, S., 1976, Specific replacement of Q base in the anticodon of tRNA by guanine catalysed by a cell-free extract of rabbit reticulocytes, Nucleic Acids Res. 3: 2593.

    PubMed  CAS  Google Scholar 

  • Panet, A., Haseltine, W. A., Baltimore, D., Peters, G., Horada, F., and Dahlberg, J. E., 1975, Specific binding of tryptophan tRNA to avian myeloblastosis virus RNA-dependent DNA polymerase (reverse transcriptase), Proc. Natl. Acad. Sci. U.S.A. 72: 2535.

    Article  PubMed  CAS  Google Scholar 

  • Pao, C. C., Paietta, J., and Gallant, J., 1977, Synthesis of guanosine tetraphosphate (magic spot I) in Saccharomyces cerevisiae, Biochem. Biophys. Res. Commun. 74: 314.

    Article  PubMed  CAS  Google Scholar 

  • Pardee, A. B., 1974, A restriction point for control of normal animal cell proliferation, Proc. Natl. Acad. Sci. U.S.A. 71: 1286.

    Article  PubMed  CAS  Google Scholar 

  • Pongs, O., and Ulbrich, M., 1976, Specific binding of formylated initiator-tRNA to Escherichia coli RNA polymerase, Proc, Natl. Acad. Sci. U.S.A. 73: 3064.

    Article  CAS  Google Scholar 

  • Prochiantz, A., and Haenni, A. L., 1973, TYMV RNA as a substrate of tRNA maturation endonuclease, Nature New Biol. 241: 168.

    PubMed  CAS  Google Scholar 

  • Revel, M., Content, J., Zilberstein, A., Nudel, U., Berissi, H., and Dudock, B., 1975, Control of mRNA translation by specific tRNA’s in extracts from interferon treated mouse cells, Colloq. Inst. Natl. Santé Rech. Med. 47: 397.

    CAS  Google Scholar 

  • Panet, A., Haseltine, W. A., Baltimore, D., Peters, G., Horada, F., and Dahlberg, J. E., 1975, Specific binding of tryptophan tRNA to avian myeloblastosis virus RNA-dependent DNA polymerase (reverse transcriptase), Proc. Natl. Acad. Sci. U.S.A. 72: 2535.

    Article  PubMed  CAS  Google Scholar 

  • Rich A., and Rajbhandary, U. L., 1976, Transfer RNA: Molecular structure, sequence and properties, Annu. Rev. Biochem. 45: 805.

    Article  PubMed  CAS  Google Scholar 

  • Schurch A., Miozzari J., and Hutter R., 1974, Regulation of tryptophan biosynthesis in Saccaromyces cerevisiae: Mode of action of 5-methyl-tryptophan and 5-methyl-tryptophan sensitive mutants, J. Bacteriol. 117: 1131–1140.

    PubMed  CAS  Google Scholar 

  • Schurch A., Miozzari J., and Hutter R., 1974, Regulation of tryptophan biosynthesis in Saccaromyces cerevisiae: Mode of action of 5-methyl-tryptophan and 5-methyl-tryptophan sensitive mutants, J. Bacteriol. 117: 1131–1140.

    PubMed  CAS  Google Scholar 

  • Richter, D., 1976, Stringent factor from Escherichia coli directs ribosomal binding and release of tRNA uncharged tRNA, Proc. Natl. Acad. Sci. U.S.A. 73: 707.

    Article  PubMed  CAS  Google Scholar 

  • Revel, M., Content, J., Zilberstein, A., Nudel, U., Berissi, H., and Dudock, B., 1975, Control of mRNA translation by specific tRNA’s in extracts from interferon treated mouse cells, Colloq. Inst. Natl. Santé Rech. Med. 47: 397.

    CAS  Google Scholar 

  • Schurch A., Miozzari J., and Hutter R., 1974, Regulation of tryptophan biosynthesis in Saccaromyces cerevisiae: Mode of action of 5-methyl-tryptophan and 5-methyl-tryptophan sensitive mutants, J. Bacteriol. 117: 1131–1140.

    PubMed  CAS  Google Scholar 

  • Richter, D., Erdman, V. A., and Sprinzl, M., 1974, A new transfer RNA fragment reaction: Tp 6pCpGp bound to a ribosome mRNA complex induces the synthesis of guanosine tetra-and pentaphosphate, Proc. Natl. Acad. Sci. U.S.A. 71: 3226.

    Article  PubMed  CAS  Google Scholar 

  • Schurch A., Miozzari J., and Hutter R., 1974, Regulation of tryptophan biosynthesis in Saccaromyces cerevisiae: Mode of action of 5-methyl-tryptophan and 5-methyl-tryptophan sensitive mutants, J. Bacteriol. 117: 1131–1140.

    PubMed  CAS  Google Scholar 

  • Rizzino, A. A., Bresalier, R. S., and Freundlich, M., 1974, Derepressed levels of the isoleucine—valine and leucine enzymes in hisT1504, a strain of Salmonella typhimurium with altered leucine tRNA, J. Bacteriol. 117: 449.

    PubMed  CAS  Google Scholar 

  • Roberts, R. J., 1972, Structures of two glycyl tRNA’s from Staphyloccus epidermidis, Nature New Biol. 237: 44.

    Article  PubMed  CAS  Google Scholar 

  • Robertus, J. D., Ladner, J. E., Finch, J. T., Rhodes, D., Brown, R. S., Clark, B. F. C., and Klug, A., 1974, Structure of yeast phenylalanine tRNA at 3 A resolution, Nature 250: 546.

    Article  PubMed  CAS  Google Scholar 

  • Rizzino, A. A., Bresalier, R. S., and Freundlich, M., 1974, Derepressed levels of the isoleucine—valine and leucine enzymes in hisT1504, a strain of Salmonella typhimurium with altered leucine tRNA, J. Bacteriol. 117: 449.

    PubMed  CAS  Google Scholar 

  • Roth, J. R., and Ames, B. H., 1966, Histidine regulatory mutants in Salmonella typhimurium. II. Histidine regulatory mutants having altered histidyl-tRNA synthetase, J. Mol. Biol. 22: 325.

    Article  PubMed  CAS  Google Scholar 

  • Sakano, H., and Shimura, Y., 1975, Sequential processing of precursor tRNA molecules in Escherichia coli, Proc. Natl. Acad. Sci. U.S.A. 72: 3369.

    Article  PubMed  CAS  Google Scholar 

  • Sakano, H., Shimura, Y., and Ozeky, H., 1974a, Selective modification of nucleosides of tRNA precursors accumulated in a temperature-sensitive mutant of E. Coli, FEBS Lett. 48: 118.

    Article  Google Scholar 

  • Sakano, H., Yamada, S., Ikemura, T., Shimura, Y., and Ozeky, M., 19746, Temperature-sensitive mutants of Escherichia coli for tRNA synthesis, Nucleic Acids Res. 1: 355.

    Google Scholar 

  • Rizzino, A. A., Bresalier, R. S., and Freundlich, M., 1974, Derepressed levels of the isoleucine—valine and leucine enzymes in hisT1504, a strain of Salmonella typhimurium with altered leucine tRNA, J. Bacteriol. 117: 449.

    PubMed  CAS  Google Scholar 

  • Salomon, P., Giveon, D., Kimhi, Y., and Littauer, U. Z., 1976, Abundance of tRNAThe lacking the peroxy-Y base in mouse neuroblastoma, Biochemistry 15: 5258.

    Article  PubMed  CAS  Google Scholar 

  • Sanger, F., Air, G. M., Barrell, B. G., Brown, H. L., Coulson, A. R., Fiddles, J. C., Hutchinson, C. A., Slocombe, P. M., and Smith, M., 1977, Nucleotide sequence of bacteriophage 4X174 DNA, Nature 265: 687.

    Article  PubMed  CAS  Google Scholar 

  • Schedl, P., and Primakoff, P., 1973, Mutants of E. coli thermosensitive for the synthesis of tRNA, Proc. Natl. Acad. Sci. U.S.A. 70: 2091.

    Article  PubMed  CAS  Google Scholar 

  • Rizzino, A. A., Bresalier, R. S., and Freundlich, M., 1974, Derepressed levels of the isoleucine—valine and leucine enzymes in hisT1504, a strain of Salmonella typhimurium with altered leucine tRNA, J. Bacteriol. 117: 449.

    PubMed  CAS  Google Scholar 

  • Schurch A., Miozzari J., and Hutter R., 1974, Regulation of tryptophan biosynthesis in Saccaromyces cerevisiae: Mode of action of 5-methyl-tryptophan and 5-methyl-tryptophan sensitive mutants, J. Bacteriol. 117: 1131–1140.

    PubMed  CAS  Google Scholar 

  • Schedl, P., Primakoff, P., and Roberts, J., 1974, Processing of E. coli tRNA precursors, Brookhaven Symp. Biol. 26: 53.

    CAS  Google Scholar 

  • Schlesinger, S., and Magasanik, B., 1964, Effect of a-methylhistidine on the control of histidine synthesis, J. Mol. Biol. 9: 670.

    Article  PubMed  CAS  Google Scholar 

  • Schurch A., Miozzari J., and Hutter R., 1974, Regulation of tryptophan biosynthesis in Saccaromyces cerevisiae: Mode of action of 5-methyl-tryptophan and 5-methyl-tryptophan sensitive mutants, J. Bacteriol. 117: 1131–1140.

    PubMed  CAS  Google Scholar 

  • Scott, J. F., Roth, J. R., and Artz, S. W., 1975, Regulation of histidine operon does not require hisG enzyme, Proc. Natl. Acad. Sci. U.S.A. 72: 5021.

    Article  PubMed  CAS  Google Scholar 

  • Seidman, J. G., and McClain, W. H., 1975, Three steps in conversion of large precursor RNA into serine and proline tRNA’s Proc. Natl. Acad. Sci. U.S.A. 72: 1491.

    Article  PubMed  CAS  Google Scholar 

  • Sharma, O. K., Beezley, D. N., and Roberts, W. K., 1976, Limitation of reticulocyte tRNA in the translation of heterologous mRNA’s, Biochemistry 15: 4313.

    Article  PubMed  CAS  Google Scholar 

  • Sherberg, H. H., and Weiss, S. B., 1972, T4 transfer RNA’s: Codon recognition and translational properties, Proc. Natl. Acad. Sci. U.S.A. 69: 1114.

    Article  Google Scholar 

  • Singer, C. E., 1972, Ph.D. Thesis, University of California, Berkeley.

    Google Scholar 

  • Singer, C. E., Smith, G. R., Cortese, R., and Ames, B. H., 1972, Mutant tRNAH° ineffective in repression and lacking two pseudouridine modifications, Nature New Biol. 238: 72.

    PubMed  CAS  Google Scholar 

  • Smith, D. W. E., 1975, Reticulocyte transfer RNA and haemoglobin synthesis, Science 190: 529.

    Article  PubMed  CAS  Google Scholar 

  • Smith, D. W. E., and McNamara, A L., 1971, Specialization of rabbit reticulocyte tRNA content for haemoglobin synthesis, Science 171: 577.

    Article  PubMed  CAS  Google Scholar 

  • Smith, J. D., 1972, Genetics of transfer RNA, Annu. Rev. Genet. 6: 235.

    Article  PubMed  CAS  Google Scholar 

  • Smith, J. D., 1976, Transcription and processing of transfer RNA precursors, Prog. Nucleic Acid Res. Mol. Biol. 16: 25.

    Article  PubMed  CAS  Google Scholar 

  • Soeiro, R., Vaughan, M. H., and Darnell, J. E., 1968, The effect of puromycin on intranuclear steps in ribosome biosynthesis, J. Cell Biol. 36: 91.

    Article  CAS  Google Scholar 

  • Sprague, U. K., Hagenbuckle, O., and Zuniza, M. C., 1977, The nucleotide sequence of two silk gland alanine tRNA’s: Implications for fibroin synthesis and for initiator tRNA structure, Cell 11: 561–570.

    Article  PubMed  CAS  Google Scholar 

  • Sprinzl, M., and Richter, D., 1976, Free 3’-OH group of the terminal adenosine of tRNA molecules is essential for the synthesis in vitro of guanosine tetra-phosphate and penta-phosphate in a ribosomal system from Escherichia coli, Eur. J. Biochem. 71: 171.

    Article  PubMed  CAS  Google Scholar 

  • Spurgeon, S. L., and Matchett, W. H., 1977, Inhibition of aminoacyltransfer ribonucleic acid synthetases and the regulation of amino-acid biosynthetic enzymes in Neurospora crassa, J. Bacteriol. 129: 1303.

    PubMed  CAS  Google Scholar 

  • Squires, G., Lee, F., Bertrand, K., Squires, C., Bronson, J. M., and Yanofsky, C., 1976, Nucleotide sequence at the 5’ end of tryptophan mRNA of E. coli, J. Mol. Biol. 103: 351.

    Article  PubMed  CAS  Google Scholar 

  • Stent, G. S., and Brenner, S., 1961, A genetic locus for the regulation of RNA synthesis, Proc. Natl. Acad. Sci. U.S.A. 47: 2005.

    Google Scholar 

  • Stephens, J. C., Artz, S. W., and Ames, B. N., 1975, Guanosine-5’-diphosphate-3’ diphosphate (ppGpp). Positive effector for histidine operon transcription and general signal for amino acid deficiency. Proc. Natl. Acad. Sci. U.S.A. 72: 4389.

    Article  PubMed  CAS  Google Scholar 

  • Talkad, V., Schneider, E., and Kennell, D., 1976, Evidence for variable rates of ribosome movement in Escherichia coli, J. Mol. Biol. 104: 299.

    Article  PubMed  CAS  Google Scholar 

  • Tashiro, Y., Morimoto, T., Matsura, S., and Hayata, S., 1968, Studies on the posterior silk gland cells and biosynthesis of fibroin during the Vth larval instar, J. Cell Biol. 38: 574.

    Article  PubMed  CAS  Google Scholar 

  • Travers, A., 1974, RNA polymerase promoter interaction. Some general principles, Cell 3: 93.

    Article  Google Scholar 

  • Travers, A., 1976, Modulation of RNA polymerase specificity by ppGpp, Mol. Gen. Genet. 147: 225.

    Article  PubMed  CAS  Google Scholar 

  • Unger, M. W., and Hartwell, L. H., 1976, Control of cell division in Saccharomyces cerevisiae by methionyl-tRNA, Proc. Natl. Acad. Sci. U.S.A. 73: 1664.

    Article  PubMed  CAS  Google Scholar 

  • Vogeli, G., Stewart, T. S., McCutchan, T., and Soll, D., 1977, Isolation of Escherichia coli precursor tRNA’s containing modified nucleoside Q, J. Biol. Chem. 252: 2311.

    PubMed  CAS  Google Scholar 

  • White, B. H., Tener, G. M., Holden, J., and Suzuki, D. T., 1973a, Analysis of tRNA’s during the development of Drosophilia, Dev. Biol. 33: 185.

    Article  PubMed  CAS  Google Scholar 

  • White, B. H., Tener, G. M., Holden, J., and Suzuki, D. T., 19736, Activity of a tRNA modifying enzyme during the development of Drosophila and its relationship to the Su(s) locus, J. Mol. Biol. 74: 635.

    Google Scholar 

  • Wilson, J. H., 1973, Function of the bacteriophage T4 transfer RNA’s, J. Mol. Biol. 74: 753.

    Article  PubMed  CAS  Google Scholar 

  • Woese, C. R., 1967, The Genetic Code, Harper, New York.

    Google Scholar 

  • Wolfner, M., Yep, D., Messenguy, F., and Fink, G. R., 1975, Integration of amino acid biosynthesis into the cell cycle of Saccharmyces cerevisiae, J. Mol. BioL 96: 273.

    Article  PubMed  CAS  Google Scholar 

  • Woodward, W. R., and Herbert, E., 1972, Coding properties of reticulocyte lysine tRNA’s in haemoglobin synthesis, Science 177: 1197.

    Article  PubMed  CAS  Google Scholar 

  • Yang, H. L., Zubay, G., Urm, E., Reiness, G., and Cashel, M., 1974, Effects of guanosine tetraphosphate, guanosine pentaphosphate and /3-y-methylenyl-guanosine pentaphosphate on gene expression of E. coli in vitro, Proc. Natl. Acad. Sci. U.S.A. 71: 63.

    Article  CAS  Google Scholar 

  • Yanofsky, C., and Soll, L., 1977, Mutations affecting tRNA°“ and its charging and their effect on regulation on transcription termination at the attenuator of the tryptophan operon, J. Mol. Biol. 113: 663.

    Article  PubMed  CAS  Google Scholar 

  • Zilbertstein, A., Dudock, B., Berissi, H., and Revel, M., 1976, Control of messenger RNA translation by minor species of leucyl-tRNA in extracts from interferon-treated cells, J. Mol. Biol. 108: 43.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1979 Plenum Press, New York

About this chapter

Cite this chapter

Cortese, R. (1979). The Role of tRNA in Regulation. In: Goldberger, R.F. (eds) Biological Regulation and Development. Biological Regulation and Development, vol 1. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-3417-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-3417-0_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-3419-4

  • Online ISBN: 978-1-4684-3417-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics