Advertisement

The Role of tRNA in Regulation

  • Riccardo Cortese
Part of the Biological Regulation and Development book series (BRD, volume 1)

Abstract

tRNA molecules were discovered about 20 years ago and the subsequent clarification of their role in protein biosynthesis developed from two different approaches. One approach, stemming from thermodynamic considerations, led Lipmann (1941) to postulate that amino acids had to be activated before they could be polymerized. Subsequently, Hoagland et al. (1957) discovered the formation of high-energy anhydride bonds between ATP and the carboxyl groups of amino acids. These authors reported that a soluble protein fraction from rat liver catalyzed the exchange of 32P with ATP, a reaction enhanced severalfold by the addition of pure amino acids. This protein fraction was shown to contain an RNA species of low molecular weight, called soluble RNA or sRNA, which binds amino acids and these bound amino acids could be transferred to proteins. Second, from another view, Crick (1958) pointed out that nucleic acids could not form highly specific templates for binding the side chains of the amino acids. Nucleic acids lack both the charges required to bind amino acids and the hydrophobic cavities necessary for interaction with the aliphatic amino acids. Moreover, Crick noted that a particular sequence of bases can provide a highly specific pattern of sites for hydrogen bonding and suggested that each amino acid is combined with a special adaptor,which is in turn capable of forming a definite pattern of hydrogen bonding with a nucleic acid template. It was soon realized that the RNA discovered by Hoagland et al. (1957) could perform just such a function. Subsequent research has shown that sRNA, now known as transfer RNA or tRNA, is the adaptor for amino acids in protein synthesis and that tRNA plays a central role in the transfer of information from DNA to proteins.

Keywords

Rous Sarcoma Virus Stringent Control tRNA Molecule tRNA Species Positive Effector 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allaudeen, M. S., Yang, S. K., and Söll, D., 1972, Leucine tRNA, from hisT mutant of Salmonella typhimurium lacks two pseudouridines, FEBS Lett. 28: 205.PubMedCrossRefGoogle Scholar
  2. Altman, S., Bothwell, A. L. M., and Stark, B. C., 1974, Processing of Escherichia coli tRNATn precursor RNA in vitro, Brookhaven Symp. Biol. 26: 12.Google Scholar
  3. Ames, B. N., and Hartman, P. E., 1963, The histidine operon, Cold Spring Harbor Symp. Quant. Biol. 28: 349.CrossRefGoogle Scholar
  4. Anderson, W. F., 1969, The effect of tRNA concentration on the rate of protein synthesis, Proc. Natl. Acad. Sci. U.S.A. 62: 566.PubMedCrossRefGoogle Scholar
  5. Anderson, W. F., and Gilbert, Y. M., 1969, tRNA-dependent translational control of in vitro haemoglobin synthesis, Biochem. Biophys. Res. Commun. 36: 456.PubMedCrossRefGoogle Scholar
  6. Artz, S. W., and Broach, J. R., 1975, Histidine regulation in Salmonella typhimurium: An activatorattenuator model of gene regulation, Proc. Natl. Acad. Sci. U.S.A.. 72: 3453.PubMedCrossRefGoogle Scholar
  7. Beckman, J. S., Johnson, P. F., and Abelson, J., 1977, Cloning of yeast tRNA genes in E. coli, Science 196: 205.CrossRefGoogle Scholar
  8. Bertrand, K., Korn, L., Lee, F., Platt, T., Squires, C. C., Squires, C., and Yanofsky, C., 1975, New features of the regulation of the tryptophan operon, Science 189: 22.PubMedCrossRefGoogle Scholar
  9. Blasi, F., Barton, R. W., Kovach, J. S., and Goldberger, R. F., 1971, Interaction between the first enzyme for histidine biosynthesis and histidyl-tRNA’°, J. Bacteriol. 106: 508.PubMedGoogle Scholar
  10. Blumenthal, T., Saunders, T. A., and Weber, K., 1972, Bacteriophage QB replicase contains the protein biosynthesis elongation factors EFTu and EFTs, Proc. Natl. Acad. Sci. U.S.A.. 69: 1313.PubMedCrossRefGoogle Scholar
  11. Blumenthal, R. M., Lemaux, P. G., Neidhardt, F. C., and Dennis, P. P., 1976, The effects of the rel A gene on the synthesis of aminoacyl-tRNA synthetases and other transcription and translation proteins in Escherichia coli B, Mol. Gen. Genet. 149: 291.PubMedCrossRefGoogle Scholar
  12. Borek, E., and Kerr, S., 1972, Atypical transfer RNA’s and their origin in neoplastic cells, Adv. Cancer Res. 15: 163.PubMedCrossRefGoogle Scholar
  13. Bossi, L., and Cortese, R., 1977, Biosynthesis of tRNA in histidine regulatory mutants of Salmonella typhimurium, Nucleic Acids Res. 4: 1945.PubMedCrossRefGoogle Scholar
  14. Bossi L., Ciampi M.S., and Cortese R., 1978, Characterization of an hisU mutant of Salmonella typhimurium defective in tRNA precursor processing, J. Bacteriol. 134: 612–620.PubMedGoogle Scholar
  15. Brenchley, J. E., and Ingraham, J. L., 1973, Characterization of a cold-sensitive hisW mutant of Salmonella typhimurium, J. Bacterial. 114: 528.Google Scholar
  16. Brenchley, J. E., and Williams, L. S., 1975, Transfer RNA involvement in the regulation of enzymes synthesis, Annu. Rev. Microbial. 29: 251.CrossRefGoogle Scholar
  17. Brenner, M., and Ames, B. N., 1971, The histidine operon and its regulation, in: Metabolic Pathways, Vol. 5 ( H. J. Vogel, ed.), pp. 349–387, Academic Press, New York.Google Scholar
  18. Brenner, M., Lewis, J. A., Strauss, D. S., De Lorenzo, F., and Ames, B. N., 1972, Histidine regulation in Salmonella typhimurium. XIV: Interaction of the histidyl tRNA synthetase with tRNA“, J. Biol. Chem. 247: 4333.PubMedGoogle Scholar
  19. Schurch A., Miozzari J., and Hutter R., 1974, Regulation of tryptophan biosynthesis in Saccaromyces cerevisiae: Mode of action of 5-methyl-tryptophan and 5-methyl-tryptophan sensitive mutants, J. Bacteriol. 117: 1131–1140.PubMedGoogle Scholar
  20. Bresalier, R. S., Rizzino, A. A., and Freundlich, M., 1975, Reduced maximal levels of derepression of isoleucine—valine and leucine enzymes in hisT mutants of Salmonella typhimurium, Nature 253: 279.PubMedCrossRefGoogle Scholar
  21. Bronson, M. Y., Squires, C., and Yanofsky, C., 1973, Nucleotide sequences from tryptophan mRNA of E. coli: The sequence corresponding to the amino terminal region of the first polypeptide specified by the operon, Proc. Natl. Acad. Sci. U.S.A.. 70: 2335.PubMedCrossRefGoogle Scholar
  22. Calker, D., and Hilse, K., 1974, Properties of isoaccepting tRNAva’ from rabbit recticulocytes: Fractionation and codon recognition, FEBS Lett. 39: 56.PubMedCrossRefGoogle Scholar
  23. Carbon, J., Chang, S., and Kirk, L. L., 1974, Clustered tRNA genes in Escherichia coli, transcription and processing, Brookhaven Symp. Biol. 26: 26.Google Scholar
  24. Carsiotis, M., and Jones, R. F., 1974, Cross-pathway regulation: Tryptophan-mediated control of histidine and arginine biosynthetic enzymes in Neurospora crassa, J. Bacteriol. 119: 889.PubMedGoogle Scholar
  25. Carsiotis, M., Jones, R. F., and Wesseling, A. C.,1974, Cross-pathway regulations: Histidine-mediated control of histidine, tryptophan and arginine biosynthetic enzymes in Neurospora crassa, J. Bacteriol. 119: 893.Google Scholar
  26. Ciampi, M. S., Arena, F., Cortese, R., and Daniel, V., 1977, Biosynthesis of pseudouridine in the in vitro transcribed tRNATY` precursor, FEBS Lett. 77: 75.PubMedCrossRefGoogle Scholar
  27. Clarkson, S. G., and Kurer, V., 1976, Isolation and some properties of DNA coding for tRNAMet from Xenopus laevis, Cell 8: 183.PubMedCrossRefGoogle Scholar
  28. Cortese, R., Kammen, H. O., Spengler, S. H., and Ames, B. N., 1974a, Biosynthesis of pseudouridine in tRNA, J. Biol. Chem. 249: 1103.PubMedGoogle Scholar
  29. Cortese, R., Landsberg, R. M., Van der Haar, R. A., Umbarger, H. E., and Ames, B. N., 1974b, Pleiotropy of hisT mutants blocked in pseudouridine synthesis in tRNA: Leucine and isoleucinevaline operons, Proc. Natl. Acad. Sci. U.S.A. 71: 1857.PubMedCrossRefGoogle Scholar
  30. Cozzone, A., and Donini, P., 1973, Turnover of polysomes in amino-acid starved Escherichia coli, J. Mol. Biol. 76: 149.PubMedCrossRefGoogle Scholar
  31. Crick, F. H. C., 1958, On protein synthesis, Symp. Soc. Exp. Biol. 12: 138.PubMedGoogle Scholar
  32. Crick, F. H. C., Brenner, S., Klug, A., and Pieczenik, G., 1976, A speculation on the origin of protein synthesis, Origins of Life 7: 389.PubMedCrossRefGoogle Scholar
  33. Dahlberg, J. E., Sawyer, R. C., Taylor, S. M., Faras, A. J., Levinson, W. E., Goodman, H. M., and Bishop, J. M., 1974, Transcription of DNA from the 70S RNA of Rous sarcoma virus. Identification of a specific 4S RNA which serves as primer, J. Virol. 13: 1126.PubMedGoogle Scholar
  34. Davidson, J. P., Davis, L., and Williams, L. S., 1977, Control of isoleucine—valine biosynthesis in tRNA ribonucleic acid mutants of Salmonella typhimurium, Fed. Proc. 36: 659 (abstract).Google Scholar
  35. Debenham, P., and Travers, A., 1977, Selective inhibition of tRNATn transcription by guanosine 3’diphosphate-5’-diphosphate, Eur. J. Biochem. 72: 515.PubMedCrossRefGoogle Scholar
  36. Deeley, R. G., Goldberger, R. F., Kovach, J., Meyers, M., and Mullinix, K., 1975, Interaction between phosphoribosyltransferase and purified histidine tRNA from wild type Salmonella typhimurium and a derepressed hisT mutant strain, Nucleic Acids Res. 2: 545.PubMedCrossRefGoogle Scholar
  37. Delaney, P., and Siddiqui, M. A. Q., 1976, Changes in in vivo levels of charged tRNA species during development of the posterior silk-gland of Bombix mori, Dev. Biol. 44: 54.CrossRefGoogle Scholar
  38. Deutch, C. E., Scarpulla, R. C., Sonnenblick. E. B., and Soffer, R. L., 1977, Pleiotropic phenotype of an E. coli mutant lacking leucyl-, phenylalanyl-transfer ribonucleic acid-protein transferase, J. Bacteriol. 129: 544.Google Scholar
  39. Nocera, P. P., Avitabile, A., and Blasi, F., 1975, In vitro transcription of the Escherichia coli his operon primed by dinucleotides. Effect of the first histidine biosynthetic enzyme, J. Biol. Chem. 250: 8376.PubMedGoogle Scholar
  40. Donini, P., Santonastaso, V., Roche, J., and Cozzone, A. J., 1978, The relationship between guanosine tetraphosphate, polysomes and RNA synthesis in amino acid-starved Escherichia coli, Molec. Biol. Rep. 4: 15–19.CrossRefGoogle Scholar
  41. Efstradiatis A., Kafatos, F. C., and Maniatis, T., 1977, The primary structure of rabbit ß-globin mRNA as determined from cloned DNA, Cell 10: 571.CrossRefGoogle Scholar
  42. Ely, B., 1974, Physiological studies of Salmonella histidine operator—promoter mutants, Genetics 78: 593.PubMedGoogle Scholar
  43. Ely, B., Fankhauser, B. D., and Hartman, P. E., 1974, A fine structure map of the Salmonella typhimurium histidine operator—promoter, Genetics 78: 607.PubMedGoogle Scholar
  44. Faras, A. J., Dahlberg, J. E., Sawyer, R. C., Harada, F., Taylor, J. M., Levinson, W. E., Bishop, J. M., and Goodman, H. M., 1974, Transcription of DNA from the 70S RNA of Rous sarcoma virus, II: Structure of a 4S RNA primer, J. Virol. 13: 1133.Google Scholar
  45. Fario, M., Cascino, A., and Cortese, R., 1977, Regulation of the intracellular concentration of T4 induced tRNA, Mol. Gen. Genet. 155: 61.PubMedCrossRefGoogle Scholar
  46. Farkas, W. R., and Singh, R., 1973, Guanylation of tRNA by cell-free lysate of rabbit reticulocytes, J. Biol. Chem. 248: 7780.PubMedGoogle Scholar
  47. Fiers, W., Contreras, R., Duerinck, F., Haegeman, G., Isertant, D., Meviegaert, J., Minion, W., Molemans, F., Rawymackers, A., Van den Berghe, A., Volckaert, G., and Ysebaert, M., 1976, Complete nucleotide sequence of bacteriophage MS2 RNA: Primary and secondary structure of the replicase gene, Nature 260: 500.PubMedCrossRefGoogle Scholar
  48. Fink, G. R., and Roth, J. R., 1968, Histidine regulatory mutants in Salmonella typhimurium, VI. Dominance studies, J. Mol. Biol. 33: 547.PubMedCrossRefGoogle Scholar
  49. Gallant, J., and Lazzarini, R. A., 1976, The strigent control, in: Protein Synthesis. A Series of Advances, Vol. 2 ( E. H. McConkey, ed.), pp. 309–359, Marcel Dekker, New York.Google Scholar
  50. Gallant, J., Palmer, C., and Pao, C. C., 1977, Anomalous synthesis of ppGpp in growing cells, Cell 11: 181.PubMedCrossRefGoogle Scholar
  51. Garel, J. P., 1974, Functional adaptation of tRNA populations, J. Theor. Biol. 43: 211.PubMedCrossRefGoogle Scholar
  52. Garel, J. P., 1976, Quantitative adaptation of isoacceptor tRNA’s to mRNA codons of alanine, glycine and serine, Nature 60: 805.CrossRefGoogle Scholar
  53. Garel, J. P., Mandel, P., Chavancy, G., and Dallie, J., 1970, Functional adaptation of tRNA’s to fibroin biosynthesis in the silk-gland of Bombix mori, FEBS Lett. 7: 327.PubMedCrossRefGoogle Scholar
  54. Gentner, H., and Berg, P., 1971, Occurrence of a glycyl-lipopolysaccharide structure in Escherichia coli and its enzymatic formation form glycyl-tRNA, Fed. Proc. 30: 1218 (abstract).Google Scholar
  55. Goldberger, R. F., and Kovach, J. S., 1972, Regulation of histidine biosynthesis in Salmonella typhimurium, Curr. Top. Cell. Regul. 5: 285.PubMedGoogle Scholar
  56. Grumberger, D., Weinstein, F. B., and Mushinsky, J. F., 1975, Deficiency of the Y base in a hepatoma phenylalanine tRNA, Nature 253: 66.CrossRefGoogle Scholar
  57. Grummt, F., and Grummt, I., 1976, Studies on the role of uncharged tRNA in the pleiotypic responses of animal cells, Eur. J. Biochem. 64: 307.PubMedCrossRefGoogle Scholar
  58. Haenni, A. L., Prochiantz, A., Bernard, O., and Chapeville, F., 1973, TYMV valyl-RNA as an amino acid donor in protein biosynthesis, Nature New Biol. 241: 166.PubMedGoogle Scholar
  59. Hartwell, L. H., 1974, Saccharomyces cerevisiae cell cycle, Bacteriol. Rev. 38: 164.PubMedGoogle Scholar
  60. Haselkorn, R., and Rothman-Denes, L. B., 1973, Protein synthesis, Annu. Rev. Biochem. 42: 397.PubMedCrossRefGoogle Scholar
  61. Haseltine, W. A., and Block, R., 1973, Synthesis of guanosine tetra-and pentaphosphate requires the presence of codon-specific, uncharged tRNA in the acceptor site of ribosome, Proc. Natl. Acad. Sci. U.S.A. 70: 1564.PubMedCrossRefGoogle Scholar
  62. Haseltine, W. A., Block, R., Gilbert, W., and Weber, K., 1972, MSI and MSII made on ribosomes in idling step of protein synthesis, Nature 238: 381.PubMedCrossRefGoogle Scholar
  63. Schurch A., Miozzari J., and Hutter R., 1974, Regulation of tryptophan biosynthesis in Saccaromyces cerevisiae: Mode of action of 5-methyl-tryptophan and 5-methyl-tryptophan sensitive mutants, J. Bacteriol. 117: 1131–1140.PubMedGoogle Scholar
  64. Haseltine, W. A., Maxam, A. M., and Gilbert, W., 1977, Rous sarcoma virus genome is terminally redundant. The 5’ sequence, Proc. Natl. Acad. Sci. U.S.A. 74: 989.PubMedCrossRefGoogle Scholar
  65. Hershko, A., Mamont, P., Shields, R., and Tomkins, G. M., 1971, Pleiotypic response, Nature New Biol. 232: 206.PubMedGoogle Scholar
  66. Schurch A., Miozzari J., and Hutter R., 1974, Regulation of tryptophan biosynthesis in Saccaromyces cerevisiae: Mode of action of 5-methyl-tryptophan and 5-methyl-tryptophan sensitive mutants, J. Bacteriol. 117: 1131–1140.PubMedGoogle Scholar
  67. Hilse, K., and Rudloff, E., 1975, Glutamine cognate codons in rabbit haemoglobin mRNA’s, FEBS Lett. 60: 380.PubMedCrossRefGoogle Scholar
  68. Hirsh, D., 1970, Tryptophan tRNA of E. coli, Nature 228: 57.PubMedCrossRefGoogle Scholar
  69. Hoagland, M. B., Zamecnick, P. C., and Stephenson, M. L., 1957, Intermediate reactions in protein biosynthesis, Biochim. Biophys. Acta 24: 215.PubMedCrossRefGoogle Scholar
  70. Holley, R. W., and Kiernan, J. A., 1974, Control of the initiation of DNA synthesis in 3T3 cells: Low molecular weight nutrients, Proc. Natl. Acad. Sci. U.S.A. 71: 2942.PubMedCrossRefGoogle Scholar
  71. Holley, R. W., Apgar, H., Everett, G. A., Madison, J. T., Marquisec, M., Merrill, S. H., Penswick, J. R., and Zamir, A., 1965, Structure of a ribonucleic acid, Science 147: 1462.PubMedCrossRefGoogle Scholar
  72. Ilgen, C., Kirk, L. L., and Carbon, J., 1976, Isolation and characterization of large tRNA precursors from E. coli, J. Biol. Chem. 251: 922.PubMedGoogle Scholar
  73. Johnson, R. C., Vanatta, P. R., and Fresco, J., 1977, Metabolic regulation of aminoacyl-tRNA synthetase biosynthesis in baker’s yeast, J. Biol. Chem. 252: 878.PubMedGoogle Scholar
  74. Kan, L. S., Ts’o, P. O. P., Sprinzl, M., Van der Haar, F., and Cramer, F., 1976, PMR studies on the NH-H hydrogen-bonded enol methyl, methylene proton resonances of tRNAPhe and phe-tRNA’, Biophys. J. 16: 1l.Google Scholar
  75. Kasai, T., 1974, Regulation of the expression of the histidine operon in Salmonella typhimurium, Nature 249: 523.PubMedCrossRefGoogle Scholar
  76. Schurch A., Miozzari J., and Hutter R., 1974, Regulation of tryptophan biosynthesis in Saccaromyces cerevisiae: Mode of action of 5-methyl-tryptophan and 5-methyl-tryptophan sensitive mutants, J. Bacteriol. 117: 1131–1140.PubMedGoogle Scholar
  77. Kim, S. H., 1976, Tridimensional structure of transfer RNA, Prog. Nucleic Acid Res. Mol. Biol. 17: 182.Google Scholar
  78. Kim, S. H., Quigley, G. J., Suddath, F. L., McPherson, A., Sneden, D., Kim, J. J., Weinzierl, J., and Rich, A., 1973, Three-dimensional structure of yeast tRNA e: Folding of the polynucleotide chain, Science 179: 285.PubMedCrossRefGoogle Scholar
  79. Kitchingman, G. R., and Fournier, M. J., 1974, Inhibition of posttranscriptional modification in E. coli, Brookhaven Symp. Biol. 26: 44.Google Scholar
  80. Kleeman, J. E., and Parsons, S. M., 1977, Inhibition of histidyl-tRNA-adenosine triphosphate phosphoribosyltransferase complex formation by histidine and by guanosine tetraphosphate, Proc. Natl. Acad. Sci. U.S.A. 74: 1535.PubMedCrossRefGoogle Scholar
  81. Korn, L. J., and Yanofsky, C., 1976, Polarity suppressors increase expression of the wild-type tryptophan operon in E. Coli, J. Mol. Biol. 103: 395.PubMedCrossRefGoogle Scholar
  82. Lee F., and Yanofsky C., 1977, Transcription termination at the trp operon attenuators of Escherichia coli and Salmonella typhimurium: RNA secondary structure and regulation of termination, Proc. Nat. Acad. Sci. USA. 74: 4365–4369.PubMedCrossRefGoogle Scholar
  83. Schurch A., Miozzari J., and Hutter R., 1974, Regulation of tryptophan biosynthesis in Saccaromyces cerevisiae: Mode of action of 5-methyl-tryptophan and 5-methyl-tryptophan sensitive mutants, J. Bacteriol. 117: 1131–1140.PubMedGoogle Scholar
  84. Meur, M. A., Gerlinger, P., and Ebel, J. P., 1976, Messenger RNA translation in the presence of homologous and heterologous tRNA, Eur. J. Biochem. 67: 519.PubMedCrossRefGoogle Scholar
  85. Lewis, J. A., and Ames, B. N., 1972, Histidine regulation in Salmonella typhimurium. XI. The percentage of tRNAms charged in vivo and its relation to the repression of the histidine operon, J. Mol. Biol. 66: 131.PubMedCrossRefGoogle Scholar
  86. Schurch A., Miozzari J., and Hutter R., 1974, Regulation of tryptophan biosynthesis in Saccaromyces cerevisiae: Mode of action of 5-methyl-tryptophan and 5-methyl-tryptophan sensitive mutants, J. Bacteriol. 117: 1131–1140.PubMedGoogle Scholar
  87. Lipmann, F., 1941, The metabolic generation and utilization of phosphate bond energy, Adv. Enzymol. 1: 99.Google Scholar
  88. Litt, M., and Kabat, D., 1972, Studies of tRNA’s and haemoglobin synthesis in sheep reticulocytes, J. Biol. Chem. 247: 6659.PubMedGoogle Scholar
  89. Littauer, U. Z., and Inouye, H., 1973, The regulation of tRNA, Annu. Rev. Biochem. 42: 439.PubMedCrossRefGoogle Scholar
  90. McClain, W. H., and Seidman, J. G., 1975, Genetic perturbations that reveal tertiary conformation of tRNA precursor molecules, Nature 257: 106.PubMedCrossRefGoogle Scholar
  91. McLaughlin, C. S., Magee, P. T., and Hartwell, L. H., 1969, Role of isoleucyl-transfer ribonucleic acid synthetase in ribonucleic acid synthesis and enzyme repression in yeast, J. Bacteriol. 100: 579.PubMedGoogle Scholar
  92. Meiss, H. K., Brill, W. J., and Magasanik, B., 1969, Genetic control of histidine degradation in Salmonella typhimurium strain LT-2, J. Biol. Chem. 244: 5382.PubMedGoogle Scholar
  93. Meyers, M., Blasi, F., Bruni, C. B., Deeley, R. G., Kovach, J. S., Levinthal, M., Mullinix, K. P., Vogel, T., and Goldberger, R. F., 1975, Specific binding of the first enzyme for histidine biosynthesis to the DNA of the histidine operon, Nucleic Acids Res. 2: 2021.PubMedCrossRefGoogle Scholar
  94. Meister, A., 1965, Biochemistry of the Amino Acids, Academic Press, New York.Google Scholar
  95. Schurch A., Miozzari J., and Hutter R., 1974, Regulation of tryptophan biosynthesis in Saccaromyces cerevisiae: Mode of action of 5-methyl-tryptophan and 5-methyl-tryptophan sensitive mutants, J. Bacteriol. 117: 1131–1140.PubMedGoogle Scholar
  96. Messenguy, F., and Delforge, J., 1976, Role of tRNA in the regulation of several biosynthesis in Saccharomyces cerevisiae, Eur. J. Biochem. 67: 335.PubMedCrossRefGoogle Scholar
  97. Meyers, M., Blasi, F., Bruni, C. B., Deeley, R. G., Kovach, J. S., Levinthal, M., Mullinix, K. P., Vogel, T., and Goldberger, R. F., 1975, Specific binding of the first enzyme for histidine biosynthesis to the DNA of the histidine operon, Nucleic Acids Res. 2: 2021.PubMedCrossRefGoogle Scholar
  98. Meza, L., Araya, A., Leon, G., Kranskoff, M., Siddiqui, M. A. Q., and Garel, J. P., 1977, Specific alaninetRNA species associated with fibroin biosynthesis in the posterior silk-gland of Bombyx mori, FEBS Lett. 77: 255.PubMedCrossRefGoogle Scholar
  99. Morse, D. E., and Morse, N. C. A., 1976, Dual control of the trp operon is mediated by both tryptophanyl-tRNA synthetase and the repressor, J. Mol. Biol. 103: 209.PubMedCrossRefGoogle Scholar
  100. Nazario, M., Kinsey, J. A., and Ahmad, M., 1971, Neurospora mutant deficient in the tryptophanyltRNA synthetase activity, J. Bacterial. 105: 121.Google Scholar
  101. Meyers, M., Blasi, F., Bruni, C. B., Deeley, R. G., Kovach, J. S., Levinthal, M., Mullinix, K. P., Vogel, T., and Goldberger, R. F., 1975, Specific binding of the first enzyme for histidine biosynthesis to the DNA of the histidine operon, Nucleic Acids Res. 2: 2021.PubMedCrossRefGoogle Scholar
  102. Neidhart, F. C., Parker, J., and McKeever, W. G., 1975, Function and regulation of aminoacyl-tRNA synthetases in prokaryotic and eukaryotic cells, Annu. Rev. Microbiol. 29: 215.CrossRefGoogle Scholar
  103. Nesbitt, J. A., and Lennarz, W. J., 1968, Participation of aminoacyl tRNA in aminoacyl phosphatidylglycerol synthesis, J. Biol. Chem. 243: 3088.PubMedGoogle Scholar
  104. Schurch A., Miozzari J., and Hutter R., 1974, Regulation of tryptophan biosynthesis in Saccaromyces cerevisiae: Mode of action of 5-methyl-tryptophan and 5-methyl-tryptophan sensitive mutants, J. Bacteriol. 117: 1131–1140.PubMedGoogle Scholar
  105. Okada, H., Horada, F., and Nishimura, S., 1976, Specific replacement of Q base in the anticodon of tRNA by guanine catalysed by a cell-free extract of rabbit reticulocytes, Nucleic Acids Res. 3: 2593.PubMedGoogle Scholar
  106. Panet, A., Haseltine, W. A., Baltimore, D., Peters, G., Horada, F., and Dahlberg, J. E., 1975, Specific binding of tryptophan tRNA to avian myeloblastosis virus RNA-dependent DNA polymerase (reverse transcriptase), Proc. Natl. Acad. Sci. U.S.A. 72: 2535.PubMedCrossRefGoogle Scholar
  107. Pao, C. C., Paietta, J., and Gallant, J., 1977, Synthesis of guanosine tetraphosphate (magic spot I) in Saccharomyces cerevisiae, Biochem. Biophys. Res. Commun. 74: 314.PubMedCrossRefGoogle Scholar
  108. Pardee, A. B., 1974, A restriction point for control of normal animal cell proliferation, Proc. Natl. Acad. Sci. U.S.A. 71: 1286.PubMedCrossRefGoogle Scholar
  109. Pongs, O., and Ulbrich, M., 1976, Specific binding of formylated initiator-tRNA to Escherichia coli RNA polymerase, Proc, Natl. Acad. Sci. U.S.A. 73: 3064.CrossRefGoogle Scholar
  110. Prochiantz, A., and Haenni, A. L., 1973, TYMV RNA as a substrate of tRNA maturation endonuclease, Nature New Biol. 241: 168.PubMedGoogle Scholar
  111. Revel, M., Content, J., Zilberstein, A., Nudel, U., Berissi, H., and Dudock, B., 1975, Control of mRNA translation by specific tRNA’s in extracts from interferon treated mouse cells, Colloq. Inst. Natl. Santé Rech. Med. 47: 397.Google Scholar
  112. Panet, A., Haseltine, W. A., Baltimore, D., Peters, G., Horada, F., and Dahlberg, J. E., 1975, Specific binding of tryptophan tRNA to avian myeloblastosis virus RNA-dependent DNA polymerase (reverse transcriptase), Proc. Natl. Acad. Sci. U.S.A. 72: 2535.PubMedCrossRefGoogle Scholar
  113. Rich A., and Rajbhandary, U. L., 1976, Transfer RNA: Molecular structure, sequence and properties, Annu. Rev. Biochem. 45: 805.PubMedCrossRefGoogle Scholar
  114. Schurch A., Miozzari J., and Hutter R., 1974, Regulation of tryptophan biosynthesis in Saccaromyces cerevisiae: Mode of action of 5-methyl-tryptophan and 5-methyl-tryptophan sensitive mutants, J. Bacteriol. 117: 1131–1140.PubMedGoogle Scholar
  115. Schurch A., Miozzari J., and Hutter R., 1974, Regulation of tryptophan biosynthesis in Saccaromyces cerevisiae: Mode of action of 5-methyl-tryptophan and 5-methyl-tryptophan sensitive mutants, J. Bacteriol. 117: 1131–1140.PubMedGoogle Scholar
  116. Richter, D., 1976, Stringent factor from Escherichia coli directs ribosomal binding and release of tRNA uncharged tRNA, Proc. Natl. Acad. Sci. U.S.A. 73: 707.PubMedCrossRefGoogle Scholar
  117. Revel, M., Content, J., Zilberstein, A., Nudel, U., Berissi, H., and Dudock, B., 1975, Control of mRNA translation by specific tRNA’s in extracts from interferon treated mouse cells, Colloq. Inst. Natl. Santé Rech. Med. 47: 397.Google Scholar
  118. Schurch A., Miozzari J., and Hutter R., 1974, Regulation of tryptophan biosynthesis in Saccaromyces cerevisiae: Mode of action of 5-methyl-tryptophan and 5-methyl-tryptophan sensitive mutants, J. Bacteriol. 117: 1131–1140.PubMedGoogle Scholar
  119. Richter, D., Erdman, V. A., and Sprinzl, M., 1974, A new transfer RNA fragment reaction: Tp 6pCpGp bound to a ribosome mRNA complex induces the synthesis of guanosine tetra-and pentaphosphate, Proc. Natl. Acad. Sci. U.S.A. 71: 3226.PubMedCrossRefGoogle Scholar
  120. Schurch A., Miozzari J., and Hutter R., 1974, Regulation of tryptophan biosynthesis in Saccaromyces cerevisiae: Mode of action of 5-methyl-tryptophan and 5-methyl-tryptophan sensitive mutants, J. Bacteriol. 117: 1131–1140.PubMedGoogle Scholar
  121. Rizzino, A. A., Bresalier, R. S., and Freundlich, M., 1974, Derepressed levels of the isoleucine—valine and leucine enzymes in hisT1504, a strain of Salmonella typhimurium with altered leucine tRNA, J. Bacteriol. 117: 449.PubMedGoogle Scholar
  122. Roberts, R. J., 1972, Structures of two glycyl tRNA’s from Staphyloccus epidermidis, Nature New Biol. 237: 44.PubMedCrossRefGoogle Scholar
  123. Robertus, J. D., Ladner, J. E., Finch, J. T., Rhodes, D., Brown, R. S., Clark, B. F. C., and Klug, A., 1974, Structure of yeast phenylalanine tRNA at 3 A resolution, Nature 250: 546.PubMedCrossRefGoogle Scholar
  124. Rizzino, A. A., Bresalier, R. S., and Freundlich, M., 1974, Derepressed levels of the isoleucine—valine and leucine enzymes in hisT1504, a strain of Salmonella typhimurium with altered leucine tRNA, J. Bacteriol. 117: 449.PubMedGoogle Scholar
  125. Roth, J. R., and Ames, B. H., 1966, Histidine regulatory mutants in Salmonella typhimurium. II. Histidine regulatory mutants having altered histidyl-tRNA synthetase, J. Mol. Biol. 22: 325.PubMedCrossRefGoogle Scholar
  126. Sakano, H., and Shimura, Y., 1975, Sequential processing of precursor tRNA molecules in Escherichia coli, Proc. Natl. Acad. Sci. U.S.A. 72: 3369.PubMedCrossRefGoogle Scholar
  127. Sakano, H., Shimura, Y., and Ozeky, H., 1974a, Selective modification of nucleosides of tRNA precursors accumulated in a temperature-sensitive mutant of E. Coli, FEBS Lett. 48: 118.CrossRefGoogle Scholar
  128. Sakano, H., Yamada, S., Ikemura, T., Shimura, Y., and Ozeky, M., 19746, Temperature-sensitive mutants of Escherichia coli for tRNA synthesis, Nucleic Acids Res. 1: 355.Google Scholar
  129. Rizzino, A. A., Bresalier, R. S., and Freundlich, M., 1974, Derepressed levels of the isoleucine—valine and leucine enzymes in hisT1504, a strain of Salmonella typhimurium with altered leucine tRNA, J. Bacteriol. 117: 449.PubMedGoogle Scholar
  130. Salomon, P., Giveon, D., Kimhi, Y., and Littauer, U. Z., 1976, Abundance of tRNAThe lacking the peroxy-Y base in mouse neuroblastoma, Biochemistry 15: 5258.PubMedCrossRefGoogle Scholar
  131. Sanger, F., Air, G. M., Barrell, B. G., Brown, H. L., Coulson, A. R., Fiddles, J. C., Hutchinson, C. A., Slocombe, P. M., and Smith, M., 1977, Nucleotide sequence of bacteriophage 4X174 DNA, Nature 265: 687.PubMedCrossRefGoogle Scholar
  132. Schedl, P., and Primakoff, P., 1973, Mutants of E. coli thermosensitive for the synthesis of tRNA, Proc. Natl. Acad. Sci. U.S.A. 70: 2091.PubMedCrossRefGoogle Scholar
  133. Rizzino, A. A., Bresalier, R. S., and Freundlich, M., 1974, Derepressed levels of the isoleucine—valine and leucine enzymes in hisT1504, a strain of Salmonella typhimurium with altered leucine tRNA, J. Bacteriol. 117: 449.PubMedGoogle Scholar
  134. Schurch A., Miozzari J., and Hutter R., 1974, Regulation of tryptophan biosynthesis in Saccaromyces cerevisiae: Mode of action of 5-methyl-tryptophan and 5-methyl-tryptophan sensitive mutants, J. Bacteriol. 117: 1131–1140.PubMedGoogle Scholar
  135. Schedl, P., Primakoff, P., and Roberts, J., 1974, Processing of E. coli tRNA precursors, Brookhaven Symp. Biol. 26: 53.Google Scholar
  136. Schlesinger, S., and Magasanik, B., 1964, Effect of a-methylhistidine on the control of histidine synthesis, J. Mol. Biol. 9: 670.PubMedCrossRefGoogle Scholar
  137. Schurch A., Miozzari J., and Hutter R., 1974, Regulation of tryptophan biosynthesis in Saccaromyces cerevisiae: Mode of action of 5-methyl-tryptophan and 5-methyl-tryptophan sensitive mutants, J. Bacteriol. 117: 1131–1140.PubMedGoogle Scholar
  138. Scott, J. F., Roth, J. R., and Artz, S. W., 1975, Regulation of histidine operon does not require hisG enzyme, Proc. Natl. Acad. Sci. U.S.A. 72: 5021.PubMedCrossRefGoogle Scholar
  139. Seidman, J. G., and McClain, W. H., 1975, Three steps in conversion of large precursor RNA into serine and proline tRNA’s Proc. Natl. Acad. Sci. U.S.A. 72: 1491.PubMedCrossRefGoogle Scholar
  140. Sharma, O. K., Beezley, D. N., and Roberts, W. K., 1976, Limitation of reticulocyte tRNA in the translation of heterologous mRNA’s, Biochemistry 15: 4313.PubMedCrossRefGoogle Scholar
  141. Sherberg, H. H., and Weiss, S. B., 1972, T4 transfer RNA’s: Codon recognition and translational properties, Proc. Natl. Acad. Sci. U.S.A. 69: 1114.CrossRefGoogle Scholar
  142. Singer, C. E., 1972, Ph.D. Thesis, University of California, Berkeley.Google Scholar
  143. Singer, C. E., Smith, G. R., Cortese, R., and Ames, B. H., 1972, Mutant tRNAH° ineffective in repression and lacking two pseudouridine modifications, Nature New Biol. 238: 72.PubMedGoogle Scholar
  144. Smith, D. W. E., 1975, Reticulocyte transfer RNA and haemoglobin synthesis, Science 190: 529.PubMedCrossRefGoogle Scholar
  145. Smith, D. W. E., and McNamara, A L., 1971, Specialization of rabbit reticulocyte tRNA content for haemoglobin synthesis, Science 171: 577.PubMedCrossRefGoogle Scholar
  146. Smith, J. D., 1972, Genetics of transfer RNA, Annu. Rev. Genet. 6: 235.PubMedCrossRefGoogle Scholar
  147. Smith, J. D., 1976, Transcription and processing of transfer RNA precursors, Prog. Nucleic Acid Res. Mol. Biol. 16: 25.PubMedCrossRefGoogle Scholar
  148. Soeiro, R., Vaughan, M. H., and Darnell, J. E., 1968, The effect of puromycin on intranuclear steps in ribosome biosynthesis, J. Cell Biol. 36: 91.CrossRefGoogle Scholar
  149. Sprague, U. K., Hagenbuckle, O., and Zuniza, M. C., 1977, The nucleotide sequence of two silk gland alanine tRNA’s: Implications for fibroin synthesis and for initiator tRNA structure, Cell 11: 561–570.PubMedCrossRefGoogle Scholar
  150. Sprinzl, M., and Richter, D., 1976, Free 3’-OH group of the terminal adenosine of tRNA molecules is essential for the synthesis in vitro of guanosine tetra-phosphate and penta-phosphate in a ribosomal system from Escherichia coli, Eur. J. Biochem. 71: 171.PubMedCrossRefGoogle Scholar
  151. Spurgeon, S. L., and Matchett, W. H., 1977, Inhibition of aminoacyltransfer ribonucleic acid synthetases and the regulation of amino-acid biosynthetic enzymes in Neurospora crassa, J. Bacteriol. 129: 1303.PubMedGoogle Scholar
  152. Squires, G., Lee, F., Bertrand, K., Squires, C., Bronson, J. M., and Yanofsky, C., 1976, Nucleotide sequence at the 5’ end of tryptophan mRNA of E. coli, J. Mol. Biol. 103: 351.PubMedCrossRefGoogle Scholar
  153. Stent, G. S., and Brenner, S., 1961, A genetic locus for the regulation of RNA synthesis, Proc. Natl. Acad. Sci. U.S.A. 47: 2005.Google Scholar
  154. Stephens, J. C., Artz, S. W., and Ames, B. N., 1975, Guanosine-5’-diphosphate-3’ diphosphate (ppGpp). Positive effector for histidine operon transcription and general signal for amino acid deficiency. Proc. Natl. Acad. Sci. U.S.A. 72: 4389.PubMedCrossRefGoogle Scholar
  155. Talkad, V., Schneider, E., and Kennell, D., 1976, Evidence for variable rates of ribosome movement in Escherichia coli, J. Mol. Biol. 104: 299.PubMedCrossRefGoogle Scholar
  156. Tashiro, Y., Morimoto, T., Matsura, S., and Hayata, S., 1968, Studies on the posterior silk gland cells and biosynthesis of fibroin during the Vth larval instar, J. Cell Biol. 38: 574.PubMedCrossRefGoogle Scholar
  157. Travers, A., 1974, RNA polymerase promoter interaction. Some general principles, Cell 3: 93.CrossRefGoogle Scholar
  158. Travers, A., 1976, Modulation of RNA polymerase specificity by ppGpp, Mol. Gen. Genet. 147: 225.PubMedCrossRefGoogle Scholar
  159. Unger, M. W., and Hartwell, L. H., 1976, Control of cell division in Saccharomyces cerevisiae by methionyl-tRNA, Proc. Natl. Acad. Sci. U.S.A. 73: 1664.PubMedCrossRefGoogle Scholar
  160. Vogeli, G., Stewart, T. S., McCutchan, T., and Soll, D., 1977, Isolation of Escherichia coli precursor tRNA’s containing modified nucleoside Q, J. Biol. Chem. 252: 2311.PubMedGoogle Scholar
  161. White, B. H., Tener, G. M., Holden, J., and Suzuki, D. T., 1973a, Analysis of tRNA’s during the development of Drosophilia, Dev. Biol. 33: 185.PubMedCrossRefGoogle Scholar
  162. White, B. H., Tener, G. M., Holden, J., and Suzuki, D. T., 19736, Activity of a tRNA modifying enzyme during the development of Drosophila and its relationship to the Su(s) locus, J. Mol. Biol. 74: 635.Google Scholar
  163. Wilson, J. H., 1973, Function of the bacteriophage T4 transfer RNA’s, J. Mol. Biol. 74: 753.PubMedCrossRefGoogle Scholar
  164. Woese, C. R., 1967, The Genetic Code, Harper, New York.Google Scholar
  165. Wolfner, M., Yep, D., Messenguy, F., and Fink, G. R., 1975, Integration of amino acid biosynthesis into the cell cycle of Saccharmyces cerevisiae, J. Mol. BioL 96: 273.PubMedCrossRefGoogle Scholar
  166. Woodward, W. R., and Herbert, E., 1972, Coding properties of reticulocyte lysine tRNA’s in haemoglobin synthesis, Science 177: 1197.PubMedCrossRefGoogle Scholar
  167. Yang, H. L., Zubay, G., Urm, E., Reiness, G., and Cashel, M., 1974, Effects of guanosine tetraphosphate, guanosine pentaphosphate and /3-y-methylenyl-guanosine pentaphosphate on gene expression of E. coli in vitro, Proc. Natl. Acad. Sci. U.S.A. 71: 63.CrossRefGoogle Scholar
  168. Yanofsky, C., and Soll, L., 1977, Mutations affecting tRNA°“ and its charging and their effect on regulation on transcription termination at the attenuator of the tryptophan operon, J. Mol. Biol. 113: 663.PubMedCrossRefGoogle Scholar
  169. Zilbertstein, A., Dudock, B., Berissi, H., and Revel, M., 1976, Control of messenger RNA translation by minor species of leucyl-tRNA in extracts from interferon-treated cells, J. Mol. Biol. 108: 43.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1979

Authors and Affiliations

  • Riccardo Cortese
    • 1
  1. 1.Institute of Biological Chemistry, Faculty of Medicine and SurgeryUniversity of NaplesNaplesItaly

Personalised recommendations