Skip to main content

Strategies of Genetic Regulation in Prokaryotes

  • Chapter
Biological Regulation and Development

Part of the book series: Biological Regulation and Development ((BRD,volume 1))

Abstract

One of the most striking characteristics of living systems is that they function in an orderly manner despite their high degree of complexity. One workable definition of regulation, in fact, is the set of mechanisms that allows organisms to maintain this orderly functioning. It is important to realize, however, that regulation was not superimposed upon living systems; orderly processes are simply more successful than are disorderly ones, and therefore tend to be preserved through the evolutionary process by conferring advantages upon organisms that possess them. The thousands of chemical reactions occurring in cells are controlled by regulatory mechanisms that operate at many different levels. This introductory chapter focuses on those that operate at the level of gene expression and will introduce some of the strategies of genetic regulation that have evolved in prokaryotic organisms. Scanning the table of contents of this brief essay should suffice to tell the reader that a very general overview is in store for him. The renaissance in biological research that occurred in the last 25 years has been due mostly to the exciting studies concerning genetic regulation in prokaryotes. I have tried to abstract from those studies the most important basic principles they illustrate and to organize into a few generalizations the enormous body of data they have produced. I believe it is these principles and generalizations with which the reader will need to arm himself before proceeding further into this volume. It is to be hoped that the necessarily simplistic view of regulation they provide will be preferable to the bewilderment that so often results from exhaustive reviews that include the details of many specific regulated systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alper, M. D., and Ames, B. N., 1978, Transport of antibiotics and metabolite analogs by systems under cyclic AMP control: Positive selection of Salmonella typhimurium cya and crp mutants, J. Bacteriol. 133: 149.

    PubMed  CAS  Google Scholar 

  • Ames, B. N., and Hartman, P., 1963, The histidine operon, Cold Spring Harbor Symp. Quant. Biol. 28: 349.

    Article  CAS  Google Scholar 

  • Anfinsen, C. B., 1973, Principles that govern the folding of polypeptide chains, Science 181: 223.

    Article  PubMed  CAS  Google Scholar 

  • Atkins, J. F., and Loper, J. C., 1970, Transcription initiation in the histidine operon of Salmonella typhimurium, Proc. Natl. Acad. Sci. U.S.A. 65: 925.

    Article  PubMed  CAS  Google Scholar 

  • Block, R., and Hazeltine, W. A., 1973, Thermolability of the stringent factor in rel mutants of Escherichia coli, J. Mol. Biol. 77: 625.

    Article  PubMed  CAS  Google Scholar 

  • Block, R., and Hazeltine, W. A., 1974, In vitro synthesis of ppGpp and pppGpp, in: The Ribosome (A. Tissiere, P. Lengyel, and M. Nomura, eds.), pp. 747–781, Cold Spring Harbor Lab., Cold Spring Habor, New York.

    Google Scholar 

  • Bretscher, M. S., 1968, Direct translation of a circular messenger DNA, Nature 220: 1088.

    Article  PubMed  CAS  Google Scholar 

  • Buttin, G., 1963, Méchanismes régulateurs dans la biosynthèse des enzymes du métabolisme du galactose chez Escherichia colt, K12 I. La biosynthèse induite de la galactokinase et l’induction simultanée de la séquence enzymatique, J. Mol. Biol. 7: 164.

    Article  PubMed  CAS  Google Scholar 

  • Cashel, M., and Gallant, J., 1969, Two compounds implicated in the function of the RC gene of E. colt, Nature 221: 838.

    Article  PubMed  CAS  Google Scholar 

  • Cashel, M., and Gallant, J., 1974, Cellular regulation of guanosine tetraphosphate and guanosine pentaphosphate, in: The Ribosome ( A. Tissiere, P. Lengyel, and M. Nomura, eds.), pp. 733–745, Cold Spring Harbor Lab., Cold Spring Harbor, New York.

    Google Scholar 

  • Emmer, M., de Crombrugghe, B., Pastan, I., and Perlman, R., 1970, Cyclic AMP receptor protein of E. coli: Its role in the synthesis of inducible enzymes, Proc. Natl. Acad. Sci. U.S.A. 66: 480.

    Article  PubMed  CAS  Google Scholar 

  • Englesberg, E., and Wilcox, G., 1974, Regulation: Positive control, Annu. Rev. Genet. 8: 219.

    Article  PubMed  CAS  Google Scholar 

  • Epstein, W., and Beckwith, J., 1968, Regulation of gene expression, Annu. Rev. Biochem. 37: 411.

    Article  CAS  Google Scholar 

  • Freundlich, M., Burns, R. O., and Umbarger, H. E., 1962, Control of isoleucine, valine, and leucine biosynthesis, I. Multi-valent repression, Proc. Natl. Acad. Sci. U.S.A. 48: 1804.

    Article  PubMed  CAS  Google Scholar 

  • Goldberger, R. F., 1974, Autogenous regulation of gene expression, Science 183: 810.

    Article  PubMed  CAS  Google Scholar 

  • Jacob, F., and Monod, J., 1961, Genetic regulatory mechanisms in the synthesis of proteins, J. Mol. Biol. 3: 318.

    Article  PubMed  CAS  Google Scholar 

  • Jacob, F., Ullman, A., and Monod, J., 1964, Le promoteur, élément génétique necéssaire à l’expression d’un operon, C.R. Acad. Sci. 258: 3125.

    CAS  Google Scholar 

  • Jobe, A., and Bourgeois, S., 1972, Lac repressor—operator interaction VI. The natural inducer of the lac operon, J. Mol. Biol. 75: 303.

    Google Scholar 

  • Lodish, H. F., 1968, Bacteriophage f2 RNA: Control of translation and gene order, Nature 220: 345.

    Article  PubMed  CAS  Google Scholar 

  • Lodish, H. F., and Robertson, H. D., 1969, Regulation of in vitro translation of bacteriophage f2 RNA, Cold Spring Harbor Symp. Quant. Biol. 34: 655.

    Article  PubMed  CAS  Google Scholar 

  • Maas, W. K., Maas, R., Wiame, J. M., and Glansdorff, N., 1964, Studies on the mechanism of repression of arginine biosynthesis in Escherichia colt, I. Dominance of repressibility in zygotes, J. Mol. Biol. 8: 359.

    Article  PubMed  CAS  Google Scholar 

  • Margolin, P., and Bauerle, R. H., 1966, Determinants for regulation and initiation of expression of tryptophan genes, Cold Spring Harbor Symp. Quant. Biol. 31: 311.

    Article  PubMed  CAS  Google Scholar 

  • Martin, R. G., 1963, The one operon—one messenger theory of transcription, Cold Spring Harbor Symp. Quant. Biol. 28: 357.

    Article  CAS  Google Scholar 

  • McFall, E., 1964, Genetic structure of the n-serine deaminase system of Escherichia coli, J. Mol. Biol. 9: 746.

    Article  PubMed  CAS  Google Scholar 

  • Neidhardt, F. C., 1966, Roles of amino acid activating enzymes in cellular physiology, Bacteriol. Rev. 30: 701.

    PubMed  CAS  Google Scholar 

  • Piérard, A., Glansdorff, N., Mergeay, M., and Wiame, J. M., 1965, Control of biosynthesis of carbamoyl phosphate in Escherichia coli, J. Mol. Biol. 14: 23.

    Article  PubMed  Google Scholar 

  • Russel, M., Gold, L., Morrissett, H., and O’Farrell, P. Z., 1976, Translational, autogenous regulation of gene 32 expression during bacteriophage T4 infection, J. Biol. Chem. 251: 7263.

    PubMed  CAS  Google Scholar 

  • Schindler, J., and Sussman, M., 1977, Ammonia determines the choice of morphogenic pathways in Dictyostelium discoidium, J. Mol. Biol. 116: 161.

    Article  PubMed  CAS  Google Scholar 

  • Stephens, J. C., Artz, S. W., and Ames, B. N., 1975, Guanosine 5’-diphosphate 3’-diphosphate (ppGpp): Positive effector for histidine operon transcription and general signal for amino-acid deficiency, Proc. Natl. Acad. Sci. U.S.A. 72: 4389.

    Article  PubMed  CAS  Google Scholar 

  • Yanofsky, C.,. 1971, Tryptophan biosynthesis in Escherichia coli. Genetic determination of the proteins involved, JAMA 218: 1026.

    Article  PubMed  CAS  Google Scholar 

  • Yanofsky, C., 1976, Regulation of transcription initiation and termination in the control of expression of the tryptophan operon of E. coli, in: Molecular Mechanisms in the Control of Gene Expression ( D. P. Nierlich and W. J. Rutter, eds.), pp. 75–87, Academic Press, New York.

    Google Scholar 

  • Zamenhof, S., and Eichhorn, H. H., 1967, Study of microbial evolution through loss of biosynthetic functions: Establishment of “defective” mutants, Nature 216: 456.

    Article  PubMed  CAS  Google Scholar 

  • Zubay, G., Schwartz, D., and Beckwith, J., 1970, Mechanism of activation of catabolite-sensitive genes: A positive control system, Proc. Natl. Acad. Sci. U.S.A. 66: 104.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1979 Plenum Press, New York

About this chapter

Cite this chapter

Goldberger, R.F. (1979). Strategies of Genetic Regulation in Prokaryotes. In: Goldberger, R.F. (eds) Biological Regulation and Development. Biological Regulation and Development, vol 1. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-3417-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-3417-0_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-3419-4

  • Online ISBN: 978-1-4684-3417-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics