Parallels in the Modes of Action of Peptide and Steroid Hormones: Membrane Effects and Cellular Entry

  • Clara M. Szego
Part of the Biochemical Endocrinology book series (BIOEND)


The conservative nature of evolution should have taught us that regulation of cells by coordinating substances in their environment proceeds through mechanisms that are independent of the chemical nature per se of the agonist. The minimum requirement for such regulation would appear to be mutual recognition and precise interaction, of necessity at that interface between the two phases that is the external cell membrane. Such interaction would be expected to have one of two possible outcomes: perturbation or stabilization of membrane conformation. All else should be secondary to this coupled process.


Luteinizing Hormone Adenylate Cyclase Cholera Toxin Peptide Hormone Germinal Vesicle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Abbreviations used in the text


adenylate cyclase


adrenocorticotropic hormone


cyclic AMP


growth hormone


human chorionic gonad­otropin


human GH


human LH




luteinizing hor­mone (lutropin)


melanocyte-stimulating hormone




surface Ig


transmission electron microscope (-electron-microscopic, microscopy)


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abro, A., and Kvinnsland, S., 1974, Adenylate cyclase in an estradiol sensitive tissue: A cytochemical study, Histochemistry 42: 333.PubMedCrossRefGoogle Scholar
  2. Albano, J. D. M., Barnes, G. D., Maudsley, D. V., Brown, B. L., and Etkins, R. P., 1974, Factors affecting the saturation assay of cyclic AMP in biological systems, Anal. Biochem 60: 130.PubMedCrossRefGoogle Scholar
  3. Albertini, D. F., Fawcett, D. W., and Olds, P. J., 1975, Morphological variations in gap junctions of ovarian granulosa cells, Tissue Cell 7: 389.PubMedCrossRefGoogle Scholar
  4. Allen, R. D., 1975, Evidence for firm linkages between microtubules and membrane-bounded vesicles, J. Cell Biol 64: 497.PubMedCrossRefGoogle Scholar
  5. Allison, A. C., 1973, The role of microfilaments and microtubules in cell movement, endocytosis and exocytosis, in: Locomotion of Tissue Cells ( R. Porter and D. W. Fitzsimons, eds.), pp. 109–148, Associated Scientific Publishers, Amsterdam.Google Scholar
  6. Allison, A. C., and Davies, P., 1977, Mechanisms of endocytosis and exocytosis, Symp. Soc. Exp. Biol 28: 419.Google Scholar
  7. Aloj, S. M., Kohn, L. D., Lee, G., and Meldolesi, M. F., 1977, The binding of thyrotropin to liposomes containing gangliosides, Biochem. Biophys. Res. Commun 74: 1053.PubMedCrossRefGoogle Scholar
  8. Anderson, R. G. W., Brown, M. S., and Goldstein, J. L., 1977, Role of the coated endocytic vesicle in the uptake of receptor-bound low density lipoprotein in human fibroblasts, Cell 10: 351.PubMedCrossRefGoogle Scholar
  9. Andres, R. Y., Jeng, I., and Bradshaw, R. A., 1977, Nerve growth factor receptors: Identification of distinct classes in plasma membranes and nuclei of embryonic dorsal root neurons, Proc. Natl. Acad. Sci. U.S.A 74: 2785.PubMedCrossRefGoogle Scholar
  10. Ascoli, M., and Puett, D., 1977, Intracellular uptake and catabolism of lutropin by testicular tissue in vivo, FEBS Lett. 75:77.Google Scholar
  11. Ascoli, M., Liddle, R. A., and Puett, D., 1976, Renal and hepatic lysosomal catabolism of luteinizing hormone, Mol. Cell. Endocrinol 4: 297.PubMedCrossRefGoogle Scholar
  12. Bahl, O. P., 1977, Human chorionic gonadotropin, its receptor and mechanism of action, Fed. Proc. Fed. Am. Soc. Exp. Biol 36: 2119.Google Scholar
  13. Beck, L. V., and Fedynskyj, N., 1967, Evidence from combined immunoassay and radio-autography procedures that intact insulin-125I molecules are concentrated by mouse kidney proximal tubule cells, Endocrinology 81: 475.PubMedCrossRefGoogle Scholar
  14. Bennett, G., Leblond, C. P., and Haddad, A., 1974, Migration of glycoprotein from the Golgi apparatus to the surface of various cell types as shown by radioautography after labeled fucose injection into rats, J. Cell Biol 60: 258.PubMedCrossRefGoogle Scholar
  15. Berg, D. K., and Hall, Z. W., 1974, Fate of a-bungarotoxin bound to acetylcholine receptors of normal and denervated muscle, Science 184: 473.PubMedCrossRefGoogle Scholar
  16. Bergelson, L. D., and Barsukov, L. I., 1977, Topological asymmetry of phospholipids in membranes, Science 197:224.Google Scholar
  17. Bergeron, J. J. M., Evans, W. H., and Geschwind, I. I., 1973, Insulin binding to rat liver Golgi fractions, J. Cell Biol 59: 771.PubMedCrossRefGoogle Scholar
  18. Bergeron, J. J. M., Posner, B. I., Josefsberg, Z., and Sikstrom, R., 1978, Intracellular polypeptide hormone receptors. I. The demonstration of specific binding-sites for insulin and human growth hormone in Golgi fractions isolated from the liver of female rats, J. Biol. Chem 253: 4058.PubMedGoogle Scholar
  19. Bernal, J., and DeGroot, L. J., 1977, Thyroid hormone receptors: Release of receptor to the medium during in vitro incubation of isolated rat liver nuclei, Endocrinology 100: 648.PubMedCrossRefGoogle Scholar
  20. Birnbaumer, L., Pohl, S. L., and Kaumann, A. J., 1974, Receptors and acceptors: A necessary distinction in hormone binding studies, in: Advances in Cyclic Nucleotide Research, Vol. 4 ( P. Greengard and G. A. Robison, eds.), pp. 239–281, Raven Press, New York.Google Scholar
  21. Bitensky, L., Alaghband-Zadeh, J., and Chayen, J., 1974, Studies on thyroid stimulating hormone and the long-acting thyroid stimulating hormone, Clin. Endocrinol. (Oxford) 3: 363.CrossRefGoogle Scholar
  22. Bjersing, L., and Cajander, S., 1974, Ovulation and the mechanism of follicle rupture. III. Transmission electron microscopy of rabbit germinal epithelium prior to induced ovulation, Cell Tissue Res. 149: 313.PubMedCrossRefGoogle Scholar
  23. Blumberg, P. M., and Robbins, P. W., 1975, Relation of protease action on the cell surface to growth control and adhesion, in: Proteases and Biological Control ( E. Reich, D. B. Rifkin, and E. Shaw, eds.), pp. 945–956, Cold Spring•Harbor Laboratory, Cold Spring Harbor, New York.Google Scholar
  24. Bosmann, H. B., 1974, Cell plasma membrane external surface glycosyltransferases: Activity in the cell mitotic cycle, Biochim. Biophys. Acta 339: 438.PubMedCrossRefGoogle Scholar
  25. Braendle, W., Breckwoldt, M., Graesslin, D., and Weise, H.-C., 1973, Subcellular distribution and fate of radioactivity in ovaries of pseudopregnant rats after in vivo administration of t’31I]hCG, Acta Endocrinol. (Copenhagen) 74: 361.Google Scholar
  26. Brenner, R. M., and West, N. B., 1975, Hormonal regulation of the reproductive tract in female mammals, Annu. Rev. Physiol 37: 273.PubMedCrossRefGoogle Scholar
  27. Brown, M. S., and Goldstein, J. L., 1976, Receptor-mediated control of cholesterol metabolism, Science 191:150.Google Scholar
  28. Brown, S. S., and Revel, J.-P., 1976, Reversibility of cell surface label rearrangement, J. Cell Biol 68: 629.PubMedCrossRefGoogle Scholar
  29. Brunet, N., Gourdji, D., Tixier-Vidal, A., Pradelles, Ph., Morgat, J. L., and Fromageot, P., 1974, Chemical evidence for associated TRF with subcellular fractions after incubation of intact rat prolactin cells (GH3) with 3H-labelled TRF, FEBS Lett. 38: 129.CrossRefGoogle Scholar
  30. Brunk, U. T., and Ericsson, J. L. E., 1972, Cytochemical evidence for the leakage of acid phosphatase through ultrastructurally intact lysosomal membranes, Histochem. J 4: 479.PubMedCrossRefGoogle Scholar
  31. Buller, R. E., and O’Malley, B. W., 1976, The biology and mechanism of steroid hormone receptor interaction with the eukaryotic nucleus, Biochem. Pharmacol. 25:1.Google Scholar
  32. Cajander, S., and Bjersing, L., 1975, Fine structural demonstration of acid phosphatase in rabbit germinal epithelium prior to induced ovulation, Cell Tissue Res. 164: 279.PubMedCrossRefGoogle Scholar
  33. Cajander, S., and Bjersing, L., 1976, Further studies of the surface epithelium covering preovulatory rabbit follicles with special reference to lysosomal alterations, Cell Tissue Res. 169:129.Google Scholar
  34. Cardella, C. J., Davies, P., and Allison, A. C., 1974, Immune complexes induce selective release of lysosomal hydrolases from macrophages, Nature (London) 247: 46.CrossRefGoogle Scholar
  35. Carpenter, G., and Cohen, S., 1976, 125I-labeled human epidermal growth factor: Binding,internalization, and degradation in human fibroblasts, J. Cell Biol 71: 159.Google Scholar
  36. Carpentier, J.-L., Perrelet, A., and Orci, L., 1977, Morphological changes of the adipose cell plasma membrane during lipolysis, J. Cell Biol. 72:104.Google Scholar
  37. Castro, A. E., Seiguer, A. C., and Mancini, R. E., 1970, Electron microscopic study of the localization of labeled gonadotropins in the Sertoli and Leydig cells of the rat testis, Proc. Soc. Exp. Biol. Med 133: 582.PubMedGoogle Scholar
  38. Castro, A. E., Alonso, A., and Mancini, R. E., 1972, Localization of follicle-stimulating and luteinizing hormones in the rat testis using immunohistological tests, J. Endocrinol 52: 129.PubMedCrossRefGoogle Scholar
  39. Castro-Vazquez, A., and McCann, S.M. 1975, Cyclic variations in the increased responsiveness of the pituitary to luteinizing hormone-releasing hormone (LHRH) induced by LHRH, Endocrinology 97:13.Google Scholar
  40. Catt, K. J., and Dufau, M. L., 1973, Spare gonadotrophin receptors in rat testis, Nature (London) New Biol. 244: 219.Google Scholar
  41. Catt, K. J., and Dufau, M. L., 1976, Basic concepts of the mechanism of action of peptide hormones, Biol. Reprod 14: 1.PubMedCrossRefGoogle Scholar
  42. Chen, T. T., Abel, J. H., Jr., McClellan, M. C., Sawyer, H. R., Diekman, M. A., and Niswender, G. D., 1977, Localization of gonadotropic hormones in lysosomes of ovine luteal cells, Cytobiologie 14: 401.Google Scholar
  43. Cheng, H., and Farquhar, M. G., 1976, Presence of adenylate cyclase activity in Golgi and other fractions from rat liver, J. Cell Biol 70: 671.PubMedCrossRefGoogle Scholar
  44. Chevalier, J., Bourguet, J., and Hugon, J. S., 1974, Membrane associated particles: Distribution in frog urinary bladder epithelium at rest and after oxytocin treatment, Cell Tissue Res. 152: 129.PubMedCrossRefGoogle Scholar
  45. Chew, C. S., and Rinard, G. A., 1974, Estrogenic regulation of uterine cyclic AMP metabolism, Biochim. Biophys. Acta 362: 493.PubMedCrossRefGoogle Scholar
  46. Chomczynski, P., and Topper, Y. J., 1974, A direct effect of prolactin and placental lac- togen on mammary epithelial nuclei, Biochem. Biophys. Res. Commun 60: 56.PubMedCrossRefGoogle Scholar
  47. Cidlowski, J. A., and Michaels, G. A., 1977, Alteration in glucocorticoid binding site number during the cell cycle in HeLa cells, Nature (London) 266: 643.CrossRefGoogle Scholar
  48. Clark, C. M., Jr., Waller, D., Kohalmi, D., Gardner, R., Clark, J., Levey, G. S., Wildenthal, K., and Allen, D., 1976, Evidence that cyclic AMP is not involved in the chronotropic action of glucagon in the adult mouse heart, Endocrinology 99: 23.PubMedCrossRefGoogle Scholar
  49. Clark, J. H., Hsueh, A. J. W., and Peck, E. J., Jr., 1977, Regulation of estrogen receptor replenishment by progesterone, Ann. N. Y. Acad. Sci 286: 161.CrossRefGoogle Scholar
  50. Cohn, Z. A., 1975, The role of proteases in macrophage physiology, in: Proteases and Biological Control ( E. Reich, D. B. Rifkin, and E. Shaw, eds.), pp. 483–493, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.Google Scholar
  51. Connell, C. J., 1977, The effect of hCG on pinocytosis within the canine inter-Sertoli cell tight junction: A preliminary report, Am. J. Anat. 148:149.Google Scholar
  52. Cook, J. S. (ed.), 1976, Biogenesis and Turnover of Membrane Macromolecules, Raven Press, New York.Google Scholar
  53. Cuatrecasas, P., 1969, Interaction of insulin with the cell membrane: The primary action of insulin, Proc. Natl. Acad. Sci. U.S.A 63: 450.PubMedCrossRefGoogle Scholar
  54. Cuatrecasas, P., Hollenberg, M. D., Chang, K. J., and Bennett, V., 1975, Hormone receptor complexes and their modulation of membrane function, Recent Prog. Horm. Res 31: 37.PubMedGoogle Scholar
  55. Cuatrecasas, P., Bennett, V., Craig, S., O’Keefe, E., and Sahyoun, N., 1976, Cholera toxin, membrane glycolipids and the mechanism of action of peptide hormones, in: The Structural Basis of Membrane Function ( Y. Hatefi and L. Djavadi-Obraniance, eds.), pp. 275–291, Academic Press, New York.Google Scholar
  56. Davidson, M. B., Van Herle, A. J., and Gerschenson, L. E., 1973, Insulin and Sepharose-insulin effects on tyrosine transaminase levels in cultured rat liver cells, Endocrinology 92: 1442.PubMedCrossRefGoogle Scholar
  57. Davidson, S. J., 1975, Proteolytic activity within lysosomes and turnover of pinocytic vesicles: A kinetic analysis, Biochim. Biophys. Acta 411: 282.PubMedCrossRefGoogle Scholar
  58. Davis, W. L., Goodman, D. B. P., Martin, J. H., Matthews, J. L., and Rasmussen, H., 1974, Vasopressin-induced changes in the toad urinary bladder epithelial surface, J. Cell Biol 61: 544.PubMedCrossRefGoogle Scholar
  59. Dean, R. T., and Barrett, A. J., 1976, Lysosomes in: Essays in Biochemistry, Vol. 12 (P. N. Campbell and W. N. Aldridge, eds.), pp. 1–40, Academic Press, London.Google Scholar
  60. de Duve, C., 1964, From cytases to lysosomes, Fed. Proc. Fed. Am. Soc. Exp. Biol. 23: 1045.Google Scholar
  61. DeKretser, D. M., Catt, K. J., Burger, H. G., and Smith, G. C., 1969, Radioautographic studies on the localization of ‘25I-labelled human luteinizing and growth hormone in immature male rats, J. Endocrinol 43: 105.CrossRefGoogle Scholar
  62. DeKretser, D. M., Martin, T. J., and Melick, R. A., 1970, The radioautographic localization of ‘25I-labelled bovine parathyroid hormone, J. Endocrinol 46: 507.CrossRefGoogle Scholar
  63. DeKretser, D. M., Catt, K. J., and Paulsen, C. A., 1971, Studies on the in vitro testicular binding of iodinated luteinizing hormone in rats, Endocrinology 88: 332.CrossRefGoogle Scholar
  64. de Luise, M., Martin, T. J., and Melick, R. A., 1970, Tissue distribution of calcitonin in the rat: Comparison with parathyroid hormone, J. Endocrinol 48: 173.PubMedCrossRefGoogle Scholar
  65. De Meyts, P., 1976, The negative cooperativity of insulin receptors: A model for the regulation of hormone recognition by target cells, in: Cell Membrane Receptors for Viruses, Antigens and Antibodies, Polypeptide Hormones, and Small Molecules ( R. F. Beers, Jr., and E. G. Bassett, eds.), pp. 17–32, Raven Press, New York.Google Scholar
  66. de Petris, S., and Raff, M. C., 1972, Distribution of immunoglobulin on the surface of mouse lymphoid cells as determined by immunoferritin electron microscopy: Antibody-induced, temperature-dependent redistribution and its implications for membrane structure, Eur. J. Immunol 2: 523.PubMedCrossRefGoogle Scholar
  67. Dimino, M. J., and Reece, R. P., 1973, Effects of gonadotropic hormones on rat ovarian lysosomes, Biol. Reprod 8: 523.PubMedGoogle Scholar
  68. Dingle, J. T., 1969, The extracellular secretion of lysosomal enzymes, in: Lysosomes in Biology and Pathology, Vol. 2 ( J. T. Dingle and H. B. Fell, eds.), pp. 421–436, North-Holland, Amsterdam.Google Scholar
  69. DiPasquale, A., McGuire, J., and Varga, J. M., 1977, The number of receptors for ßmelanocyte stimulating hormone in Cloudman melanoma cells is increased by dibutyryl adenosine 3’:5’-cyclic monophosphate or cholera toxin, Proc. Nat!. Acad. Sci. U.S.A 74: 601.CrossRefGoogle Scholar
  70. Doljanski, F., and Kapeller, M., 1976, Cell surface shedding—the phenomenon and its possible significance, J. Theor. Biol 62: 253.PubMedCrossRefGoogle Scholar
  71. Donatsch, P., and Richardson, B., 1975, Localization of prolactin in rat kidney tissue using a double-antibody technique, J. Endocrinol 66: 101.PubMedCrossRefGoogle Scholar
  72. Douglas, W. W., 1974, Involvement of calcium in exocytosis and the exocytosisvesiculation sequence, Biochem. Soc. Symp 39: 1.PubMedGoogle Scholar
  73. Dumont, J. E., 1971, The action of thyrotropin on thyroid metabolism, Vitam. Horm. (N.Y.) 29: 287.Google Scholar
  74. Duncan, R., and Pratten, M. K., 1977, Membrane economics in endocytic systems, J. Theor. Biol 66: 727.PubMedCrossRefGoogle Scholar
  75. Dupont-Mairesse, N., Van Sande, J., Rooryck, J., Fastrez-Boute, A., and Galand, P., 1974, Mechanism of estrogen action—Independence of several responses of the rat uterus from the early increase in adenosine 3’,5’-cyclic monophosphate, J. Steroid Biochem 5: 173.PubMedCrossRefGoogle Scholar
  76. Edelman, G. M., Spear, P. G., Rutishauser, U., and Yahara, I., 1974, Receptor specificity and mitogenesis in lymphocyte populations, in: The Cell Surface in Development ( A. A. Moscona, ed.), pp. 141–164, John Wiley & Sons, New York.Google Scholar
  77. Ekholm, R., 1977, Thyroid hormone secretion, in: Hormones and Cell Regulation, Vol. 1, Proceedings of the First INSERM European Symposium on Hormones and Cell Regulation, Bischoffsheim, France, 1976 ( J. Dumont and J. Nunez, eds.), pp. 91–110, Elsevier/North-Holland, Amsterdam.Google Scholar
  78. Ekholm, R., Engström, G., Ericson, L. E., and Melander, A., 1975, Exocytosis of protein into the thyroid follicle lumen: An early effect of TSH, Endocrinology 97: 337.PubMedCrossRefGoogle Scholar
  79. Elias, H., 1971, Three-dimensional structure identified from single sections, Science 174: 993.PubMedCrossRefGoogle Scholar
  80. Espey, L. L, 1974, Ovarian proteolytic enzymes and ovulation, Biol. Reprod 10: 216.PubMedCrossRefGoogle Scholar
  81. Ezzell, R. M., and Szego, C. M., 1977, Luteinizing hormone-induced translocation of lysosomes to the germinal vesicle during maturation of rat oocytes, J. Cell Biol. (Suppl.) 75:173a.Google Scholar
  82. Fishman, P. H., and Brady, R. 0., 1976, Biosynthesis and function of gangliosides, Science, 194: 906.Google Scholar
  83. Flores, J., and Sharp, G. W. G., 1976, Studies on the mechanism of action of cholera toxin on adenylate cyclase, in: Membranes and Disease ( L. Bolis, J. F. Hoffman, and A. Leaf, eds.), pp. 273–279, Raven Press, New York.Google Scholar
  84. Fox, T. O., Sheppard, J. R., and Burger, M. M., 1971, Cyclic membrane changes in animal cells: Transformed cells permanently display a surface architecture detected in normal cells only during mitosis, Proc. Natl. Acad. Sci. U.S.A 68: 244PubMedCrossRefGoogle Scholar
  85. Franklin, T. J., and Foster, S. J., 1973, Hormone-induced desensitisation of hormonal control of cyclic AMP levels in human diploid fibroblasts, Nature (London) New Biol. 246:146.Google Scholar
  86. Freed, J. J., and Lebowitz, M. M., 1970, The association of a class of saltatory movements with microtubules in cultured cells, J. Cell Biol 45: 334.Google Scholar
  87. Freychet, P., Kahn, C. R., Roth, J., and Neville, D. M., Jr., 1972, Insulin interactions with liver plasma membranes: Independence of binding and degradation, J. Biol. Chem 247: 3953.PubMedGoogle Scholar
  88. Frey-Wyssling, A., 1973, Comparative Organellography of the Cytoplasm, Springer-Verlag, Vienna.CrossRefGoogle Scholar
  89. Garrido, J., 1975, Ultrastructural labeling of cell surface lectin receptors during the cell cycle, Exp. Cell Res. 94:159.Google Scholar
  90. Giorgi, E. P., 1976, Studies on androgen transport into canine prostate in vitro, J. Endocrinol. 68:109.Google Scholar
  91. Giraud, A., Fayet, G., and Lissitzky, S., 1974, Thyrotropin-induced aggregation-promoting factors of adult cultured thyroid cells, Exp. Cell Res 87: 359.PubMedCrossRefGoogle Scholar
  92. Goldfine, I. D., 1977, Does insulin need a second messenger?, Diabetes 26:143.Google Scholar
  93. Goldfine, I. D., and Smith, G. J., 1976, Binding of insulin to isolated nuclei, Proc. Natl. Acad. Sci. U.S.A. 73:1427.Google Scholar
  94. Goldfine, I. D., Smith, G. J., Wong, K. Y., and Jones, A. L., 1977, Cellular uptake and nuclear binding of insulin in human cultured lymphocytes: Evidence for potential intracellular sites of insulin action, Proc. Natl. Acad. Sci. U.S.A. 74:1368.Google Scholar
  95. Gonatas, N. K., Kim, S. U., Stieber, A., and Avrameas, S., 1977, Internalization of lectins in neuronal GERL, J. Cell Biol. 73:1.Google Scholar
  96. Gordon, S., and Cohn, Z. A., 1973, The macrophage, Int. Rev. Cytol. 36:171.Google Scholar
  97. Gorski, J., and Gannon, F., 1976, Current models of steroid hormone action: A critique, Annu. Rev. Physiol 38: 425.PubMedCrossRefGoogle Scholar
  98. Gourdji, D., Tixier-Vidal, A., Morin, A., Pradelles, P., Morgat, J.-L., Fromageot, P., and Kerdelhue, B., 1973, Binding of a tritiated thyrotropin-releasing factor to a prolactin secreting clonal cell line (GH3), Exp. Cell Res 82: 39.PubMedCrossRefGoogle Scholar
  99. Graham, R. C., and Karnovsky, M. J., 1966, The early stages of absorption of injected horseradish peroxidase in the proximal tubules of mouse kidney: Ultrastructural cytochemistry by a new technique, J. Histochem. Cytochem 14: 291.PubMedCrossRefGoogle Scholar
  100. Greenspan, F. S., and Hargadine, J. R. 1965, The intracellular localization of pituitary thyrotropic hormone, J. Cell Biol 26:177.Google Scholar
  101. Gregoriadis, G., 1975, Homing of liposomes to target cells, Biochem. Soc. Trans. 3: 613.PubMedGoogle Scholar
  102. Grosvenor, C. E., and Whitworth, N. S., 1976, Incorporation of rat prolactin into rat milk in vivo and in vitro, J. Endocrinol 70: 1.PubMedCrossRefGoogle Scholar
  103. Han, S. S., Rajaniemi, H. J., Cho, M. I., Hirshfield, A. N., and Midgley, A. R., Jr., 1974, Gonadotropin receptors in rat ovarian tissue. II. Subcellular localization of LH binding sites by electron microscopic radioautography, Endocrinology 95: 589.PubMedCrossRefGoogle Scholar
  104. Harrison, R. W., Fairfield, S., and Orth, D. N., 1974, Evidence for glucocorticoid trans- port through the target cell membrane, Biochem. Biophys. Res. Commun 61: 1262.PubMedCrossRefGoogle Scholar
  105. Hecht, J. P., Dellacha, J. M., Santome, J. A., Paladini, A. C., Hurwitz, E., and Sela, M., 1972, Lipolytic activity of bovine growth hormone bound to Sepharose beads, FEBS Lett. 20: 83.PubMedCrossRefGoogle Scholar
  106. Hechter, O., and Soifer, D., 1971, Involvement of the adenyl cyclase 3’,5’-AMP system in steroid hormone action, in: Basic Actions of Sex Steroids on Target Organs ( P. O. Hubinont, F. Leroy, and P. Galand, eds.), pp. 93–111, S. Karger, Basel.Google Scholar
  107. Hefting, T. B., Zwisler, O., and Wiegandt, H., 1977, Structure of tetanus toxin. II. Toxin binding to ganglioside, J. Biol. Chem 252: 194.Google Scholar
  108. Henson, P. M., 1976, Secretion of lysosomal enzymes induced by immune complexes and complement, in: Lysosomes in Biology and Pathology, Vol. 5 (J. T. Dingle and R. T. Dean, eds), pp. 99–126, North-Holland, Amsterdam.Google Scholar
  109. Hinkle, P. M., and Tashjian, A. H., Jr., 1975, Thyrotropin-releasing hormone regulates the number of its own receptors in the GH3 strain of pituitary cells in culture, Biochemistry 14: 3815CrossRefGoogle Scholar
  110. Hirsch, P. C., and Szego, C. M., 1974, Estradiol receptor functions of soluble proteins from target-specific lysosomes, J. Steroid Biochem 5: 533.PubMedCrossRefGoogle Scholar
  111. Hodson, S., and Brenchley, G., 1976, Similarities of the Golgi apparatus membrane and the plasma membrane in rat liver cells, J. Cell Sci 20: 167.PubMedGoogle Scholar
  112. Holmgren, J., 1977, A model system for membrane gangliosides as cell receptors, in: Endocrinology: Proceedings of the V International Congress of Endocrinology, Hamburg, July 18–24, 1976 ( V. H. T. James, ed.), pp. 497–501, Excerpta Medica, Amsterdam.Google Scholar
  113. Horvat, A., Li, E., and Katsoyannis, P G, 1975, Cellular binding sites for insulin in rat liver, Biochim. Biophys. Acta 382: 609.PubMedCrossRefGoogle Scholar
  114. Houslay, M. D., Hesketh, T. R., Smith, G. A., Warren, G. B, and Metcalfe, J. C., 1976a, The lipid environment of the glucagon receptor regulates adenylate cyclase activity, Biochim. Biophys. Acta 436: 495.Google Scholar
  115. Houslay, M. D., Metcalfe, J. C., Warren, G. B., Hesketh, T. R., and Smith, G. A., 1976b, The glucagon receptor of rat liver plasma membrane can couple to adenylate cyclase without activating it, Biochim. Biophys. Acta 436: 489.PubMedCrossRefGoogle Scholar
  116. Hsueh, A. J. W., Dufau, M. L., and Catt, K. J., 1976, Regulation of luteinizing hormone receptors in testicular interstitial cells by gonadotropin, Biochem. Biophys. Res. Commun 72: 1145.CrossRefGoogle Scholar
  117. Huang, D., and Cuatrecasas, P., 1975, Insulin-induced reduction of membrane receptor concentrations in isolated fat cells and lymphocytes—independence from receptor occupation and possible relation to proteolytic activity of insulin, J. Biol. Chem 250: 8251.PubMedGoogle Scholar
  118. Hunt, R. C., Gold, E., and Brown, J. C., 1975, Cell cycle dependent exposure of a high molecular weight protein on the surface of mouse L cells, Biochim. Biophys. Acta 413: 453.PubMedCrossRefGoogle Scholar
  119. Jackson, V., and Chalkley, R., 1974, The cytoplasmic estradiol receptors of bovine uterus:Their occurrence, interconversion, and binding properties, J. Biol. Chem 249: 1627.PubMedGoogle Scholar
  120. Jard, S., and Bockaert, J., 1975, Stimulus–response coupling in neurohypophysial peptide target cells, Physiol. Rev 55: 489.PubMedGoogle Scholar
  121. Jarett, L., and Smith, R. M., 1976, Ultrastructural approaches to the study of hormone receptors: The use of ferritin–insulin in the localization of biologically relevant insulin receptors, in: Cell Membrane Receptors for Viruses, Antigens and Antibodies, Polypeptide Hormones, and Small Molecules ( R. F. Beers, Jr., and E. G. Bassett, eds.), pp. 91–104, Raven Press, New York.Google Scholar
  122. Jensen, E. V., and DeSombre, E. R., 1972, Mechanism of action of the female sex hormones, Annu. Rev. Biochem 41: 203.PubMedCrossRefGoogle Scholar
  123. Jirmanovd, I., Libelius, R., Lundquist, I., and Thesleff, S., 1977, Protamine induced intracellular uptake of horseradish peroxidase and vacuolation in mouse skeletal muscle in vitro, Cell Tissue Res. 176: 463.Google Scholar
  124. Johnson, M., and Ramwell, P. W., 1973, Prostaglandin modification of membrane-bound enzyme activity: A possible mechanism of action?, Prostaglandins 3: 703.PubMedGoogle Scholar
  125. Kachadorian, W. A., Wade, J. B., and DiScala, V. A., 1975, Vasopressin: Induced structural change in toad bladder luminal membrane, Science 190: 67.CrossRefGoogle Scholar
  126. Kahn, C. R., 1975, Membrane receptors for polypeptide hormones, in: Methods in Membrane Biology, Vol. 3 (E. D. Korn, ed.), pp. 81–146, Plenum Press, New York. Kahn, C. R., 1976, Membrane receptors for hormones and neurotransmitters, J. Cell Biol. 70: 261.Google Scholar
  127. Kaulen, H. D., Henning, R., and Stoffel, W., 1970, Comparison of some enzymes of the lysosomal and the plasma membrane of the rat liver cell, Hoppe-Seyler’s Z. Physiol. Chem 351: 1555.PubMedCrossRefGoogle Scholar
  128. Kenny, A. J., 1977, Proteinases associated with cell membranes, in: Proteinases in Mammalian Cells and Tissues (A. J. Barrett, ed.), Research Monographs in Cell and Tissue Physiology, Vol. 2, pp. 393–444, Elsevier/North-Holland, Amsterdam.Google Scholar
  129. Ketelbant-Balasse, P., Rodesch, F., Neve, P., and Pasteels, J. M., 1973, Scanning electron microscope observations of apical surfaces of dog thyroid cells, Exp. Cell Res. 79:111.Google Scholar
  130. Kiefer, H. C., and Kantor, H. S., 1976, Cell surfaces, cyclic nucleotides, and unrestrained cell division: A natural role is proposed for the cell surface receptor of Vibrio cholerae and Escherichia coli enterotoxins, in: Cyclic Nucleotides and the Regulation of Cell Growth ( M. Abou-Sabé, ed.), pp. 131–172, Dowden, Hutchinson & Ross, Stroudsburg, PennsylvaniaGoogle Scholar
  131. Kimura, H., Thomas, E., and Murad, F., 1974, Effects of decapitation, ether and pentobarbital on guanosine 3’,5’-phosphate and adenosine 3’,5’-phosphate levels in rat tissues, Biochim. Biophys. Acta 343: 519.PubMedCrossRefGoogle Scholar
  132. King, R. J. B., and Mainwaring, W. I. P., 1974, Steroid—Cell Interactions, University Park Press, Baltimore.Google Scholar
  133. Koch, B., Lutz-Bucher, B., Briaud, B., and Mialhe, C., 1977, Glucocorticoid binding to plasma membranes of the adenohypophysis, J. Endocrinol 73: 399.PubMedCrossRefGoogle Scholar
  134. Kolata, G. B., 1977, Hormone receptors: How are they regulated?, Science 196: 747.PubMedCrossRefGoogle Scholar
  135. Kolb, H. J., Renner, R., Hepp, K., Weiss, L., and Wieland, O. H., 1975, Re-evaluation of Sepharose—insulin as a tool for the study of insulin action, Proc. Natl. Acad. Sci.U.S.A 72: 248.PubMedCrossRefGoogle Scholar
  136. Korn, E. D., 1975, Biochemistry of endocytosis, in: Biochemistry of Cell Walls and Membranes (C. F. Fox, ed.), MTP International Review of Science: Biochemistry, Series One, Vol. 2, pp. 1–26, Butterworths, London.Google Scholar
  137. Kowalski, K., Babiarz, D., Sato, S., and Burke, G., 1972, Stimulatory effects of induced phagocytosis on the function of isolated thyroid cells, J. Clin. Invest 51: 2808.PubMedCrossRefGoogle Scholar
  138. Kuehl, F. A., Jr., Ham, E. A., Zanetti, M. E., Sanford, C. H., Nicol, S. E., and Goldberg, N. D., 1974, Estrogen-related increases in uterine guanosine 3’:5’-cyclic mono-phosphate levels, Proc. Natl. Acad. Sci. U.S.A 71: 1866.PubMedCrossRefGoogle Scholar
  139. Kvinnsland, S., 1976, Effects of D-propranolol and estradiol on the cervicovaginal epithelium, Cell Tissue Res. 173: 325.PubMedCrossRefGoogle Scholar
  140. Larsen, W. J., 1977a, Structural diversity of gap junctions, Tissue Cell 9: 373.PubMedCrossRefGoogle Scholar
  141. Larsen, W. J., 1977b, Gap junctions and hormone action, in: Transport of Ions and Water in Epithelia ( B. L. Gupta, R. B. Moreton, J. L. Oschman, and B. J. Wall, eds.), pp. 333–361, Academic Press, London.Google Scholar
  142. Ledley, F. D., Mullin, B. R., Lee, G., Aloj, S. M., Fishman, P. H., Hunt, L. T., Dayhoff, M. O., and Kohn, L. D., 1976, Sequence similarity between cholera toxin and glycoprotein hormones: Implications for structure activity relationship and mechanism of action, Biochem. Biophys. Res. Commun 69: 852.PubMedCrossRefGoogle Scholar
  143. Lee, G., Aloj, S. M., Brady, R. O., and Kohn, L. D., 1976, The structure and function of glycoprotein hormone receptors: Ganglioside interactions with human chorionic gonadotropin, Biochem. Biophys. Res. Commun 73: 370.PubMedCrossRefGoogle Scholar
  144. Lesniak, M. A., and Roth, J., 1976, Regulation of receptor concentration by homologous hormone: Effect of human growth hormone on its receptor in IM-9 lymphocytes, J. Biol. Chem 251: 3720.PubMedGoogle Scholar
  145. Levi-Montalcini, R., Revoltella, R., and Calissano, P., 1974, Microtubule proteins in the nerve growth factor mediated response: Interaction between the nerve growth factor and its target cells, Recent Prog. Horm. Res 30: 635.PubMedGoogle Scholar
  146. Liao, S., Lin, A. H., and Tymoczko, J. L., 1971, Adenyl cyclase of cell nuclei isolated from rat ventral prostate, Biochim. Biophys. Acta 230: 535.PubMedCrossRefGoogle Scholar
  147. Lloyd, J. B., 1977, Cellular transport of lysosomal enzymes: An alternative hypothesis, Biochem. J 164: 281.PubMedGoogle Scholar
  148. Lopata, A., Fonseca, J. R., and Szego, C. M., 1977, Cytoplasmic and nuclear events associated with germinal vesicle breakdown in rat oocytes exposed to LH in vitro: Cinemicrographic analysis, J. Reprod. Fertil 50: 211.PubMedCrossRefGoogle Scholar
  149. Maggi, V., Franks, L. M., Wilson, P. D., and Carbonell, A. W., 1969, Localization of insulin in mouse tissues using fluorescence microscopy and light microscope and high resolution autoradiography, Diabetologia 5: 67.PubMedCrossRefGoogle Scholar
  150. Mancini, R. E., Castro, A., and Seiguer, A. C., 1967, Histologic localization of follicle-stimulating and luteinizing hormones in the rat testis, J. Histochem. Cytochem 15: 516.PubMedCrossRefGoogle Scholar
  151. Manley, S. W., Bourke, J. R., and Hawker, R. W., 1974, The thyrotrophin receptor in guinea pig thyroid homogenate: General properties, J. Endocrinol 61: 419.CrossRefGoogle Scholar
  152. Marx, J. L., 1977, Gene transfer in mammalian cells: Mediated by chromosomes, Science 197:146.Google Scholar
  153. Masur, S. K., Holtzman, E., Schwartz, I. L., and Walter, R., 1971, Correlation between pinocytosis and hydroosmosis induced by neurohypophyseal hormones and mediated by adenosine 3’,5’-cyclic monophosphate, J. Cell Biol 49: 582.PubMedCrossRefGoogle Scholar
  154. Masur, S. K., Holtzman, E., and Walter, R., 1972, Hormone-stimulated exocytosis in the toad urinary bladder: Some possible implications for turnover of surface membranes, J. Cell Biol 52: 211.PubMedCrossRefGoogle Scholar
  155. Matsuzawa, H., and Nirenberg, M., 1975, Receptor-mediated shifts in cGMP and cAMP levels in neuroblastoma cells, Proc. Natl. Acad. Sci. U.S.A 72: 3472.PubMedCrossRefGoogle Scholar
  156. McBride, O. W., and Ozer, H. L., 1973, Transfer of genetic information by purified metaphase chromosomes, Proc. Natl. Acad. Sci. U.S.A 70: 1258.PubMedCrossRefGoogle Scholar
  157. McLean, R. J., 1977, Membrane specialization in the course of differentiation, in: Mammalian Cell Membranes, Vol. 3, Surface Membranes of Specific Cell Types ( G. A. Jamieson and D. M. Robinson, eds.), pp. 250–265, Butterworths, London.Google Scholar
  158. Meldolesi, J., 1974, Dynamics of cytoplasmic membranes in guinea pig pancreatic acinar cells. I. Synthesis and turnover of membrane proteins, J. Cell Biol 61: 1.PubMedCrossRefGoogle Scholar
  159. Meldolesi, M. F., Fishman, P. H., Aloj, S. M., Ledley, F. D., Lee, G., Bradley, R. M., Brady, R. O., and Kohn, L. D., 1977, Separation of the glycoprotein and ganglioside components of thyrotropin receptor activity in plasma membranes, Biochem. Biophys. Res. Commun 75: 581.PubMedCrossRefGoogle Scholar
  160. Milgrom, E., Thi, L., Atger, M., and Baulieu, E.-E., 1973, Mechanisms regulating the concentration and the conformation of progesterone receptor(s) in the uterus, J. Biol. Chem 248: 6366.PubMedGoogle Scholar
  161. Miller, F., and Palade, G. E., 1964, Lytic activities in renal protein absorption droplets: An electron microscopical cytochemical study, J. Cell Biol 23: 519.PubMedCrossRefGoogle Scholar
  162. Mitra, S., and Rao, Ch.V., 1977, Golgi vesicle (GV) receptors for prostaglandins (PGs) and gonadotropins in bovine corpora lutea, Physiologist 20: 64.Google Scholar
  163. Mitra, S., and Rao, Ch.V., 1978, Receptors for gonadotropins and prostaglandins in lysosomes of bovine corpora lutea, Arch. Biochem. Biophys 185: 126.PubMedCrossRefGoogle Scholar
  164. Miyamoto, M., and Terayama, H., 1975, Serum factors affecting cathepsin release from lysosomes, Biochem. Biophys. Res. Commun 64: 617.PubMedCrossRefGoogle Scholar
  165. Mukherjee, C., Caron, M. G., and Lefkowitz, R. J., 1976, Regulation of adenylate cyclase coupled ß-adrenergic receptors by ß-adrenergic catecholamines, Endocrinology 99: 347.PubMedCrossRefGoogle Scholar
  166. Mullin, B. R., Fishman, P. H., Lee, G., Aloj, S. M., Ledley, F. D., Winand, R. J., Kohn,L. D., and Brady, R. 0., 1976, Thyrotropin-ganglioside interactions and their relationship to the structure and function of thyrotropin receptors, Proc. Natl. Acad. Sci.U.S.A 73: 842.Google Scholar
  167. Neifeld, J. P., Lippman, M. E., and Tormey, D. C., 1977, Steroid hormone receptors in normal human lymphocytes: Induction of glucocorticoid receptor activity by phytohemagglutinin stimulation, J. Biol. Chem 252: 2972.PubMedGoogle Scholar
  168. Neufeld, E. F., Sando, G. N., Garvin, A. J., and Rome, L. H., 1977, The transport of lysosomal enzymes, J. Supramol. Struct 6: 95.PubMedCrossRefGoogle Scholar
  169. Neuman, W. F., Neuman, M. W., Sammon, P. J., and Casarett, G. W., 1975, The metabolism of labeled parathyroid hormone. IV. Autoradiographic studies, Calcif. Tissue Res 18: 263.PubMedCrossRefGoogle Scholar
  170. Neurath, H., and Walsh, K. A., 1976, Role of proteolytic enzymes in biological regulation, Proc. Natl. Acad. Sci. U.S.A 73: 3825.PubMedCrossRefGoogle Scholar
  171. Nicolson, G. L., 1974, Ultrastructural analysis of toxin binding and entry into mammalian cells, Nature (London) 251: 628.CrossRefGoogle Scholar
  172. Nicolson, G. L., 1976, Trans-membrane control of the receptors on normal and tumor cells. II. Surface changes associated with transformation and malignancy, Biochim. Biophys. Acta 458:1.Google Scholar
  173. Nimrod, A., Tsafriri, A., and Lindner, H. R., 1977, In vitro induction of binding sites for hCG in rat granulosa cells by FSH, Nature (London) 267: 632.Google Scholar
  174. Nolin, J. M., and Witorsch, R. J., 1976, Detection of endogenous immunoreactive prolactin in rat mammary epithelial cells during lactation, Endocrinology 99: 949.Google Scholar
  175. Nordquist, R. E., and Palmieri, G. M. A., 1974, Intracellular localization of parathyroid hormone in the kidney, Endocrinology 95: 229.PubMedCrossRefGoogle Scholar
  176. Northover, B. J., 1977, Effect of indomethacin and related drugs on the calcium-ion dependent secretion of lysosomal and other enzymes by neutrophil polymorphonuclear leucocytes in vitro, Br. J. Pharmacol 59: 253.PubMedCrossRefGoogle Scholar
  177. Novikoff, A. B., 1976, The endoplasmic reticulum: A cytochemist’s view, Proc. Natl. Acad. Sci. U.S.A 73: 2781.Google Scholar
  178. Novikoff, A. B., Essner, E., and Quintana, N., 1964, Golgi apparatus and lysosomes, Fed. Proc. Fed. Am. Soc. Exp. Biol 23: 1010.Google Scholar
  179. Okajima, F., and Ui, M., 1976, Lack of correlation between hormonal effects on cyclic AMP and glycogenolysis in rat liver, Arch. Biochem. Biophys 175: 549.PubMedCrossRefGoogle Scholar
  180. O’Malley, B. W., and Buller, R. E., 1976, Current concepts in steroid hormone action, in: The Year in Endocrinology 1975–1976 ( S. H. Ingbar, ed.), pp. 227–315, Plenum Press, New York.Google Scholar
  181. Oppenheimer, J. H., Schwartz, H. L., Surks, M. I., Koerner, D., and Dillman, W. H., 1976, Nuclear receptors and the initiation of thyroid hormone action, Recent Prog. Norm. Res 32: 529.Google Scholar
  182. Orci, L., Malaisse-Lagae, F., Ravazzola, M., Amherdt, M., and Renold, A. E., 1973, Exocytosis-endocytosis coupling in the pancreatic beta cell, Science 181: 561.PubMedCrossRefGoogle Scholar
  183. Orth, J., and Christensen, A. K., 1977, Localization of 1251-labeled FSH in the testes of hypophysectomized rats by autoradiography at the light and electron microscope levels, Endocrinology 101: 262.PubMedCrossRefGoogle Scholar
  184. Ozon, R., and Bellé, R., 1973, Progesterone receptor associated with the “melanosome” fraction of Pleurodeles waltlii oocytes (Urodela amphibian), Biochim. Biophys. Acta 320: 588.PubMedCrossRefGoogle Scholar
  185. Pantalone, R. M., and Page, R. C., 1975, Lymphokine-induced production and release of lysosomal enzymes by macrophages, Proc. Natl. Acad. Sci. U.S.A 72: 2091.Google Scholar
  186. Papahadjopoulos, D., Poste, G., and Mayhew, E., 1975, The interaction of phospholipids vesicles with mammalian cells in vitro, Biochem. Soc. Trans 3: 606.PubMedGoogle Scholar
  187. Pappenheimer, A. M., Jr., and Gill, D. M., 1973, Diphtheria, Science 182: 353.PubMedCrossRefGoogle Scholar
  188. Parker, C. W., Sullivan, T. J., and Wedner, H. J., 1974, Cyclic AMP and the immune response, in: Advances in Cyclic Nucleotide Research, Vol. 4 (P. Greengard and G. A.Robison, eds.), pp. 1–79, Raven Press, New York.Google Scholar
  189. Pastan, I., 1972, Cyclic AMP, Sci. Am. 227: 97.Google Scholar
  190. Pesanti, E. L., and Axline, S. G., 1975, Colchicine effects on lysosomal enzyme induction and intracellular degradation in the cultivated macrophage, J. Exp. Med. 141:1030.Google Scholar
  191. Petrusz, P., 1974, Demonstration of gonadotropin binding sites in the rat ovary by an immunoglobulin—enzyme bridge method, Eur. J. Obstet. Gynecol. Reprod. Biol. 4/1 Suppl.: S3.Google Scholar
  192. Petrusz, P., and Sar, M., 1978, Light microscopic localization of gonadotropin binding sites in ovarian target cells, in: Cell Membrane Receptors for Drugs and Hormones (R. W. Straub and L. Bolis, eds.), Raven Press, New York (in press).Google Scholar
  193. Pfeuffer, T., and Heimreich, E. J. M., 1975, Activation of pigeon erythrocyte membrane adenylate cyclase by guanylnucleotide analogues and separation of a nucleotide binding protein, J. Biol. Chem. 250: 867.Google Scholar
  194. Pietras, R. J., 1976, Vasopressin-induced redistribution of binding sites for concanavalin A at the surface of epithelial cells from urinary bladder, Nature (London) 264: 774.CrossRefGoogle Scholar
  195. Pietras, R. J., and Szego, C. M., 1975a, Endometrial cell calcium and oestrogen action, Na-ture (London) 253: 357.CrossRefGoogle Scholar
  196. Pietras, R. J., and Szego, C. M., 1975b, Surface modifications evoked by estradiol and diethylstilbestrol in isolated endometrial cells: Evidence from lectin probes and extracellular release of lysosomal protease, Endocrinology 97: 1445.Google Scholar
  197. Pietras, R. J., and Szego, C. M., 1976, Early membrane alterations in isolated epithelial cells treated in vitro with chemical carcinogens, Cancer Lett. 1: 237.CrossRefGoogle Scholar
  198. Pietras, R. J., and Szego, C. M., 1977a, Specific binding-sites for oestrogen at the outer surfaces of isolated endometrial cells, Nature (London) 265: 69.CrossRefGoogle Scholar
  199. Pietras, R. J., and Szego, C.M. 1977b, Blockade of estrogen uptake and endometrial responsiveness to hormone by colchicine and proteinase inhibitors, Endocrinology 100(Suppl.):79.Google Scholar
  200. Pietras, R. J., and Szego, C.M. 1977c, Growth responses of liver cells with plasma membrane binding-sites for estradiol-17(3, J. Cell Biol (Suppl.)75:187a.Google Scholar
  201. Pietras, R. J., and Szego, C. M., 1978, Metabolic and proliferative responses to estrogen by hepatocytes selected for plasma membrane binding-sites specific for estradiol-17ß, J. Cellular Physiol. (in press).Google Scholar
  202. Pietras, R. J., Naujokaitis, P. J., and Szego, C. M., 1975a, Surface modifications evoked by antidiuretic hormone in isolated epithelial cells: Evidence from lectin probes, J. Supramol. Struct 3: 391.PubMedCrossRefGoogle Scholar
  203. Pietras, R. J., Seeler, B. J., and Szego, C. M., 1975b, Influence of antidiuretic hormone on release of lysosomal hydrolase at the mucosal surface of epithelial cells from urinary bladder, Nature (London) 257: 493.CrossRefGoogle Scholar
  204. Pietras, R. J., Naujokaitis, P. J., and Szego, C. M., 1976, Differential effects of vasopressin on the water, calcium, and lysosomal enzyme contents of mitochondria-rich and lysosome-rich (granular) epithelial cells from bullfrog urinary bladder, Mol. Cell. Endocrinol 4: 89.PubMedCrossRefGoogle Scholar
  205. Pietras, R. J., Hutchens, T. W., and Szego, C. M., 1978, Hepatocyte plasma membrane subfractions enriched in high-affinity, low-capacity binding sites specific for estradiol17ß, Endocrinology 102 (Suppl.): 76.Google Scholar
  206. Posner, B. I., Kelly, P. A., and Friesen, H. G., 1975, Prolactin receptors in rat liver: Possible induction by prolactin, Science 188: 57.PubMedCrossRefGoogle Scholar
  207. Posner, B. I., Josefsberg, Z., and Bergeron, J. J. M., 1978, Intracellular polypeptide hormone receptors. II. Characterization of insulin binding-sites in Golgi fractions from the liver of female rats, J. Biol. Chem. 253: 4067.PubMedGoogle Scholar
  208. Raff, M., 1976, Self regulation of membrane receptors, Nature (London) 259: 265.CrossRefGoogle Scholar
  209. Raff, M. C., and de Petris, S., 1974, Ligand-induced redistribution of membrane macromolecules: Some possible implications for cancer, J. Clin. Pathol. (Suppl.) 27: 31.CrossRefGoogle Scholar
  210. Rajaniemi, H., and Vanha-Perttula, T., 1972, Specific receptor for LH in the ovary: Evidence by autoradiography and tissue fractionation, Endocrinology 90: 1.CrossRefGoogle Scholar
  211. Rao, Ch.V., and Mitra, S., 1977a, Subcellular distribution of prostaglandin and gonadotropin receptors in bovine corpora lutea, Biochem. Biophys. Res. Commun 76: 636.PubMedCrossRefGoogle Scholar
  212. Rao, Ch.V., and Mitra, S., 1977b, Lysosomal (LY) receptors for prostaglandins (PGs) and gonadotropins in bovine corpora lutea, Physiologist 20: 78.Google Scholar
  213. Rao, M. C., Richards, J. S., Midgley, A. R., Jr., and Reichert, L. E., Jr., 1977, Regulation of gonadotropin receptors by luteinizing hormone in granulosa cells, Endocrinology 101:512.Google Scholar
  214. Rao, M. L., Rao, G. S., Höller, M., Breuer, H., Schattenberg, P. J., and Stein, W. D., 1976, Uptake of cortisol by isolated rat liver cells: A phenomenon indicative of carrier-mediation and simple diffusion, Hoppe-Seyler’s Z. Physiol. Chem 357: 573.PubMedCrossRefGoogle Scholar
  215. Refsnes, K., Olsnes, S., and Pihl, A., 1974, On the toxic proteins abrin and ricin: Studies of their binding to and entry into Ehrlich ascites cells, J. Biol. Chem 249: 3557.PubMedGoogle Scholar
  216. Reynolds, W. A., 1971, Localization of radioactive thyroxine in metamorphosing tissues, in: Hormones in Development ( M. Hamburgh and E. J. W. Barrington, eds.), pp. 299–319, Appleton-Century-Crofts, New York.Google Scholar
  217. Richards, J. S., Ireland, J. J., Rao, M. C., Bernath, G. A., Midgley, A. R., Jr., and Reichert, L. E., Jr., 1976, Ovarian follicular development in the rat: Hormone receptor regulation by estradiol, follicle stimulating hormone and luteinizing hormone, Endocrinology 99:1562.Google Scholar
  218. Robertson, A. L., Jr., and Khairallah, P. A., 1971, Angiotensin II: Rapid localization in nuclei of smooth and cardiac muscle, Science 172: 1138.PubMedCrossRefGoogle Scholar
  219. Robinson, J. P., Derreberry, S., Liddle, R. A., Ascoli, M., and Puett, D., 1977, Renal uptake of lutropin: Studies based on electron microscopic autoradiography and nephrectomy, Mol. Cell. Biochem 15: 63.PubMedCrossRefGoogle Scholar
  220. Robison, G. A., 1970, Cyclic AMP as a second messenger, J. Reprod. Fertil. (Suppl.) 10: 55.Google Scholar
  221. Robison, G. A., Butcher, R. W., and Sutherland, E. W., 1971, Other hormones, in: Cyclic AMP, Chapter 10, Academic Press, New York.Google Scholar
  222. Rosenfeld, M. G., and O’Malley, B. W., 1970, Steroid hormones: Effects on adenyl cyclase activity and adenosine 3’,5’-monophosphate in target tissues, Science 168: 253.PubMedCrossRefGoogle Scholar
  223. Rubio, R., 1974, Purine nucleoside phosphorylase, in: Electron Microscopy of Enzymes:Principles and Methods, Vol. 3 ( M. A. Hayat, ed.), pp. 54–67, Van Nostrand Reinhold, New York.Google Scholar
  224. Ryan, G. B., Unanue, E. R., and Karnovsky, M. J., 1974, Inhibition of surface capping of macromolecules by local anaesthetics and tranquillisers, Nature (London) 250: 56.Google Scholar
  225. Ryan, R. J., and Lee, C. Y., 1976, The role of membrane bound receptors, Biol. Reprod. 14: 16.PubMedCrossRefGoogle Scholar
  226. Sahyoun, N., and Cuatrecasas, P., 1975, Mechanism of activation of adenylate cyclase by cholera toxin, Proc. Natl. Acad. Sci. U.S.A 72: 3438.PubMedCrossRefGoogle Scholar
  227. Sananes, N., and Psychoyos, A., 1974, Cytochemical localization of adenyl cyclase in the rat uterus, J. Reprod. Fertil. 38:181.Google Scholar
  228. Sanborn, B. M., Bhalla, R. C., and Korenman, S. G., 1973, Use of a modified radioligand assay to measure the effect of estradiol on uterine adenosine 3’,5’-cyclic mono-phosphate, Endocrinology 92: 494.Google Scholar
  229. Sanders, R. B., Thompson, W. J., and Robison, G. A., 1977, Epinephrine-and glucagonstimulated cardiac adenylyl cyclase activity, Biochim. Biophys. Acta 498:10.Google Scholar
  230. Schimke, R. T., 1975, Turnover of membrane proteins in animal cells, in: Methods in Mem- brane Biology, Vol. 3 ( E. D. Korn, ed.), pp. 201–235, Plenum Press, New York.Google Scholar
  231. Schramm,M. Orly, J., Eimerl, S., and Korner, M., 1977, Coupling of hormone receptors to adenylate cyclase of different cells by cell fusion, Nature (London) 268:310.Google Scholar
  232. Schwartz, J., Nutting, D. F., Goodman, H. M., Kostyo, J. L., and Fellows, R. E., 1973, Growth hormone covalently bound to Sepharose. II. Study of the biological activity of a growth hormone—Sepharose complex in adipose tissue and diaphragm muscle, Endocrinology 92: 439.PubMedCrossRefGoogle Scholar
  233. Selinger, R. C., and Civen, M., 1971, ACTH diazotized to agarose: Effects on isolated adrenal cells, Biochem. Biophys. Res. Commun 43: 793.PubMedCrossRefGoogle Scholar
  234. Setchell, B. P., Hinton, B. T., Jacks, F., and Davies, R. V., 1976, The restricted penetration of iodinated rat FSH and LH into the seminiferous tubules of the rat testis, Mol. Cell. Endocrinol 6: 59.PubMedCrossRefGoogle Scholar
  235. Shiu, R. P. C., and Friesen, H. G., 1976a, Prolactin receptors, in: Methods in Receptor Research (M. Blecher, ed.), Part 2, pp. 565–598, Marcel Dekker, New York.Google Scholar
  236. Shiu, R. P. C., and Friesen, H. G., 1976b, Blockade of prolactin action by an antiserum to its receptors, Science 192: 259.PubMedCrossRefGoogle Scholar
  237. Sim, M. K., and Chantharaksri, U., 1973, Rat uterine contractility and the activities of uterine adenyl cyclase and phosphodiesterase during the estrus cycle, Biochem. Pharmacol 22: 1417.PubMedCrossRefGoogle Scholar
  238. Simon, M., 1976, Conversion of guanosine 3’,5’-monophosphate to adenosine 3’,5’-monophosphate in frog myocardial tissue, Biochem. Biophys. Res. Commun 68: 1219.PubMedCrossRefGoogle Scholar
  239. Simson, J. V., and Spicer, S. S., 1973, Activities of specific cell constituents in phagocytosis (endocytosis), Int. Rev. Exp. Pathol 12: 79.Google Scholar
  240. Singer, S. J., 1976, The fluid mosaic model of membrane structure: Some applications to ligand—receptor and cell—cell interactions, in: Surface Membrane Receptors: Interface between Cells and Their Environment ( R. A. Bradshaw, W. A. Frazier, R. C. Merrell, D. I. Gottlieb, and R. A. Hogue-Angeletti, eds.), pp. 1–24, Plenum Press, New York.Google Scholar
  241. Singhal, R. L., 1973, Cyclic adenosine 3’,5’-monophosphate and estrogenic stimulation of uterine metabolism, Adv. Pharmacol. Chemother 11: 99.PubMedCrossRefGoogle Scholar
  242. Soloff, M. S., Rees, H. D., Sar, M., and Stumpf, W. E., 1975, Autoradiographic localization of radioactivity from [3Hloxytocin in the rat mammary gland and oviduct, Endocrinology 96:1475.Google Scholar
  243. Stacy,B.D., Wallace, A. L. C., Gemmell, R. T., and Wilson, B. W., 1976, Absorption of 125I-labelled sheep growth hormone in single proximal tubules of the rat kidney, J. Endocrinol 68:21.Google Scholar
  244. Steinman, R. M., Brodie, S. E., and Cohn, Z. A., 1976, Membrane flow during pinocytosis: A stereologic analysis, J. Cell Biol 68: 665.Google Scholar
  245. Sternberger, L. A., and Petrali, J. P., 1975, Quantitative immunocytochemistry of pituitary receptors for luteinizing hormone-releasing hormone, Cell Tissue Res. 162: 141.PubMedCrossRefGoogle Scholar
  246. Stoeckel, K., Guroff, G., Schwab, M., and Thoenen, H., 1976, The significance of retrograde axonal transport for the accumulation of systemically administered nerve growth factor (NGF) in the rat superior cervical ganglion, Brain Res. 109: 271.PubMedCrossRefGoogle Scholar
  247. Stoner, J., Manganiello, V. C., and Vaughan, M., 1973, Effects of bradykinin and indomethacin on cyclic GMP and cyclic AMP in lung slices, Proc. Natl. Acad. Sci. U.S.A 70: 3830.Google Scholar
  248. Sulimovici, S., and Lunenfeld, B., 1973, The effect of gonadotropins on the mitochondria) adenylate cyclase of rat testis, Biochem. Biophys. Res. Commun 55: 673.PubMedCrossRefGoogle Scholar
  249. Sutherland, E. W., 1972, Studies on the mechanism of hormone action, Science 177: 401.PubMedCrossRefGoogle Scholar
  250. Sutherland, E. W., and Rall, T. W., 1960, The relation of adenosine-3’,5’-phosphate and phosphorylase to the actions of catecholamines and other hormones, Pharmacol. Rev. 12: 265.Google Scholar
  251. Sutherland, R. L., and Baulieu, E.-E., 1976, Quantitative estimates of cytoplasmic and nuclear oestrogen receptors in chick oviduct: Effect of oestrogen on receptor concentration and subcellular distribution, Eur. J. Biochem 70: 531.PubMedCrossRefGoogle Scholar
  252. Suyemitsu, T., and Terayama,H. 1975, Specific binding sites for natural glucocorticoids in plasma membranes of rat liver, Endocrinology 96:1499.Google Scholar
  253. Sylvén, B., Snellman, O., and Sträuli, P., 1974, Immunofluorescent studies on the occurrence of cathepsin B1 at tumor cell surfaces, Virchows Arch. B 17: 97.Google Scholar
  254. Symons, A. M., Lewis, D. A., and Ancill, R. J., 1970, The uptake of anti-inflammatory steroids by lysosomes, J. Pharm. Pharmacol 22: 944.PubMedCrossRefGoogle Scholar
  255. Szego, C. M., 1971, The lysosomal membrane complex as a proximate target for steroid hormone action, in: The Sex Steroids: Molecular Mechanisms ( K. W. McKerns, ed.), pp. 1–51, Appleton-Century-Crofts, New York.Google Scholar
  256. Szego, C. M., 1972a, The role of cyclic AMP in lysosome mobilization and their nucleotropic translocation in steroid hormonal target cells, in: Advances in Cyclic Nucleotide Research, Vol. 1 ( P. Greengard, G. A. Robison, and R. Paoletti, eds.), pp. 541–564, Raven Press, New York.Google Scholar
  257. Szego, C. M., 1972b, Lysosomal membrane stabilization and antiestrogen action, Gynecol. Invest 3: 63.PubMedCrossRefGoogle Scholar
  258. Szego, C. M., 1974, The lysosome as a mediator of hormone action, Recent Prog. Horm. Res 30: 171.PubMedGoogle Scholar
  259. Szego, C. M., 1975, Lysosomal function in nucleocytoplasmic communication, in: Lysosomes in Biology and Pathology, Vol. 4 ( J. T. Dingle and R. Dean, eds.), pp. 385–477, North-Holland, Amsterdam.Google Scholar
  260. Szego, C. M., 1976, Steroid-protein binding: From circulating blood to target cell nucleus, Gynecol. Invest 7: 251.Google Scholar
  261. Szego, C. M., and Davis, J. S., 1967, Adenosine 3’,5’-monophosphate in rat uterus: Acute elevation by estrogen, Proc. Natl. Acad. Sci. U.S.A 58: 1711.Google Scholar
  262. Szego, C. M., and Seeler, B. J., 1973, Hormone-induced activation of target-specific lysosomes: Acute translocation to the nucleus after administration of gonadal hormones, J. Endocrinol. 56:347.Google Scholar
  263. Szego, C. M., Seeler, B. J., Steadman, R. A., Hill, D. F., Kimura, A. K., and Roberts, J. A., 1971, The lysosomal membrane complex: Focal point of primary steroid hormone action, Biochem. J 123: 523.PubMedGoogle Scholar
  264. Szego, C. M., Rakich, D. R., Seeler, B. J., and Gross, R. S., 1974a, Lysosomal labilization: Rapid, target-specific effect of ACTH, Endocrinology 95: 863.Google Scholar
  265. Szego, C. M., Steadman, R. A., and Seeler, B. J., 1974b, Intranuclear concentration of lysosomal hydrolases in steroid target cells: Acute response to administration of gonadal hormones in vivo, Eur. J. Biochem. 46: 377.CrossRefGoogle Scholar
  266. Szego, C. M., Seeler, B. J., and Smith, R. E., 1976, Lysosomal cathepsin B1: Partial characterization in rat preputial-gland and recompartmentation in response to estradiol-17ß, Eur. J. Biochem 69: 463.CrossRefGoogle Scholar
  267. Szego, C.M. Nazareno, M.B. and Porter, D. D., 1977, Estradiol-induced redistribution of lysosomal proteins in rat preputial-gland: Evidence from immunologic probes, J. Cell Biol. 73:354Google Scholar
  268. Taptiklis, N., 1969, Penetration of the vascular endothelial barrier by non-neoplastic thyroid cells in circulation, Eur. J. Cancer 5: 445.PubMedGoogle Scholar
  269. Tate, R. L., Holmes, J. M., Kohn, L. D., and Winand, R. J., 1975, Characteristics of a solubilized thyrotropin receptor from bovine thyroid plasma membrane, J. Biol. Chem 250: 6527.Google Scholar
  270. Taylor, A., Mamelak, M., Reaven, E., and Maffly, R., 1973, Vasopressin: Possible role of microtubules and microfilaments in its action, Science 181: 347.PubMedCrossRefGoogle Scholar
  271. Taylor, R. B., Duffus, W. P. H., Raff, M. C., and de Petris, S., 1971, Redistribution and pinocytosis of lymphocyte surface immunoglobulin molecules induced by antiimmunoglobulin antibody, Nature (London) New Biol. 233: 225.CrossRefGoogle Scholar
  272. Terayama, H., Okamura, N., and Suyemitsu, T., 1976, Epinephrine and corticoid receptors in plasma membranes of liver and hepatomas, in: Control Mechanisms in Cancer ( W. E. Criss, T. Ono, and J. R. Sabine, eds.), p. 83, Raven Press, New York.Google Scholar
  273. Thomopoulos, P., Kosmakos, F. C., Pastan, I., and Lovelace, E., 1977, Cyclic AMP increases the concentration of insulin receptors in cultured fibroblasts and lymphocytes, Biochem. Biophys. Res. Commun 75: 246.PubMedCrossRefGoogle Scholar
  274. Turkington, R. W., 1970, Stimulation of RNA synthesis in isolated mammary cells by insulin and prolactin bound to Sepharose, Biochem. Biophys. Res. Commun 41: 1362.PubMedCrossRefGoogle Scholar
  275. Vaes, G., 1969, Lysosomes and the cellular physiology of bone resorption, in: Lysosomes in Biology and Pathology, Vol. 1 ( J. T. Dingle and H. B. Fell, eds.), pp. 217–253, North-Holland, Amsterdam.Google Scholar
  276. van de Werve, G., van den Berghe, G., and Hers, H. G., 1974, A simplified procedure for the assay of adenosine 3’:5’-monophosphate by the activation of liver phosphorylase, Eur. J. Biochem 41: 97.PubMedCrossRefGoogle Scholar
  277. Varga, J. M., DiPasquale, A., Pawelek, J., McGuire, J. S., and Lerner, A. B., 1974, Regulation of melanocyte stimulating hormone action at the receptor level: Discontinuous binding of hormone to synchronized mouse melanoma cells during the cell cycle, Proc. Natl. Acad. Sci. U.S.A 71: 1590.PubMedCrossRefGoogle Scholar
  278. Varga, J. M., Moellmann, G., Fritsch, P., Godawska, E., and Lerner, A. B., 1976a, Association of cell surface receptors for melanotropin with the Golgi region in mouse melanoma cells, Proc. Natl. Acad. Sci. U.S.A 73: 559.PubMedCrossRefGoogle Scholar
  279. Varga, J. M., Saper, M. A., Lerner, A. B., and Fritsch, P., 1976b, Nonrandom distribution of receptors for melanocyte-stimulating hormone on the surface of mouse melanoma cells, J. Supramol. Struct 4: 45.PubMedCrossRefGoogle Scholar
  280. Vilar, O., Alvarez, B., Davidson, O., and Mancini, R. E., 1964, Incorporation by the kidney of fluorescent pituitary hormones, J. Histochem. Cytochem 12: 621.PubMedCrossRefGoogle Scholar
  281. Wang, C. C., and Touster, 0., 1976, Acid phosphatase of HeLa cells: Properties and regulation of lysosomal activity by serum, Arch. Biochem. Biophys 172: 191.PubMedCrossRefGoogle Scholar
  282. Wetzel, B., Jones, G. M., and Sanford, K. K., 1977, Cell cycle and topography in non-synchronized monolayers: The use of autoradiography and time-lapse for more rigorous SEM studies, in: Scanning Electron Microscopy/1977, Vol. 1, Proceedings of the Workshop on Biological Specimen Preparation Techniques, pp. 545–552, IIT Research Institute, Chicago, Illinois.Google Scholar
  283. Wiegandt, H., Ziegler, W., Staerk, J., Kranz, T., Ronneberger, H. J., Zilg, H., Karlsson,K. A., and Samuelsson, B. E., 1976, Studies of the ligand binding to cholera toxin.I. The lipophilic moiety of sialoglycolipids,Hoppe-Seyler’s Z.Physiol.Chem. 357:1637.Google Scholar
  284. Winzler, R. J., 1970, Carbohydrates in cell surfaces, Int. Rev. Cytol 29: 77.PubMedCrossRefGoogle Scholar
  285. Witorsch, R. J., 1977, Immunohistochemical demonstration of prolactin binding sites in some sex accessory organs of the male rat, Endocrinology 100: 281.Google Scholar
  286. Witorsch, R. J., and Smith, J. P., 1977, Evidence for androgen-dependent intracellular binding of prolactin in rat ventral prostate gland, Endocrinology 101: 929.PubMedCrossRefGoogle Scholar
  287. Wolf, B. A., and Robbins, P. W., 1974, Cell cycle synthesis of glycolipids including the Forssman antigen, in: Control of Proliferation in Animal Cells ( B. Clarkson and R. Baserga, eds.), pp. 473–479, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.Google Scholar
  288. Zor, U., Koch, Y., Lamprecht, S. A., Ausher, J., and Lindner, H. R., 1973, Mechanism of oestradiol action on the rat uterus: Independence of cyclic AMP, prostaglandin E2 and ß-adrenergic mediation, J. Endocrinol 58: 525.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1978

Authors and Affiliations

  • Clara M. Szego
    • 1
  1. 1.Department of Biology, Molecular Biology Institute, and Cancer CenterUniversity of CaliforniaLos AngelesUSA

Personalised recommendations