Mechanism of Action of Gonadotropins and the Regulation of Gene Expression

  • Richard A. Jungmann
  • Mary Hunzicker-Dunn
Part of the Biochemical Endocrinology book series (BIOEND)

Abstract

Growth and maturation of the ovary, culminating in the onset of complete and cyclic ovulation as well as functional steroidogenesis, are clearly some of the most profound physiological changes that occur during the postnatal development of the female. The postnatal developmental period is characterized by the acquisition of new functions that necessitate the induction of specific cellular proteins partaking in the diversity of ovarian function. The induction of new specific ovarian proteins during the period of postnatal differentiation requires mechanisms that conceivably involve selective activation and derepression of genetic information residing in the genome. It implies both a selection and restriction of DNA function, with specific regions of the repressed genome being called into activity in the various ovarian cells, resulting in synthesis of specific species of RNA and of specific cellular proteins that reflect the degree of differentiation of the ovary.

Keywords

Estrogen Tyrosine Sodium Chloride Catecholamine Stein 

Abbreviations used in this chapter

cAMP

cyclic AMP

C subunit

catalytic subunit of protein kinase

FSH

stimulating hormone

hCG

human chorionic gonadotropin

LH

luteinizing hormone

R subunit

regulatory subunit of protein kinase

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adiga, P. R., Murthy, P. V. N., and McKenzie, J. M., 1971, Stimulation by thyrotropin, long-acting thyroid stimulator, and dibutyryl 3’,5’-adenosine monophosphate of protein and ribonucleic acid synthesis and ribonucleic acid polymerase activities in porcine thyroid in vitro, Biochemistry 10: 702.PubMedCrossRefGoogle Scholar
  2. Anderson, C. H., Schwartz, N. B., and Nequin, L., 1973, Effects of antisera to FSH and LH on gonadal development in the rat, Anat. Rec. 175: 264.Google Scholar
  3. Ashby, C. D., and Walsh, D. A., 1972, Characterization of the interaction of a protein inhibitor with adenosine 3’,5’-monophosphate-dependent protein kinases. I. Interaction with the catalytic subunit of protein kinase, J. Biol. Chem. 247: 6637.Google Scholar
  4. Ashby, C. D., and Walsh, D. A., 1973, Characterization of the interaction of a protein inhibitor with adenosine 3’,5’-monophosphate-dependent protein kinases. II. Mechanism of action with the holoenzyme, J. Biol. Chem. 248: 1255.PubMedGoogle Scholar
  5. Averner, M. J., Brock, M. L., and Jost, J. P., 1972, Stimulation of ribonucleic acid synthesis in horse lymphocytes by exogenous cyclic adenosine 3’,5’-monophosphate, J. Biol. Chem. 247: 413.PubMedGoogle Scholar
  6. Bell, G. I., Valenzuela, P., and Rutter, W. J., 1976, Phosphorylation of yeast RNA polymerases, Nature 261: 429.PubMedCrossRefGoogle Scholar
  7. Bell, G. I., Valenzuela, P., and Rutter, W. J., 1977, Phosphorylation of yeast DNA-dependent RNA polymerases in vivo and in vitro, J. Biol. Chem. 252: 3082.PubMedGoogle Scholar
  8. Bitensky, M. W., and Gorman, R. E., 1973, Cellular responses to cyclic AMP, Prog. Biophys. Mol. Biol. 26: 411.Google Scholar
  9. Buhler, J. M., Iborra, F., Sentenac, A., and Fromageot, P., 1976, The presence of phosphorylated subunits in yeast RNA polymerases A and B, FEBS Lett. 71: 37.CrossRefGoogle Scholar
  10. Bylund, D. B., and Krebs, E. G., 1975, Effect of denaturation on the susceptibility of proteins to enzymic phosphorylation, J. Biol. Chem. 250: 6355.PubMedGoogle Scholar
  11. Byus, C. V., and Russell, D. H., 1974, Effects of methyl xanthine derivatives on cyclic AMP levels and omithine decarboxylase activity of rat tissues, Life Sci. 15: 1991Google Scholar
  12. Byus, C. V., and Russell, D. H., 1975, Ornithine decarboxylase activity: Control by cyclic nucleotides, Science 187: 650.PubMedCrossRefGoogle Scholar
  13. Byus, C. V., and Russell, D. H., 1976, Possible regulations of omithine decarboxylase activity in the adrenal medulla of the rat by a cAMP-dependent mechanism, Biochem. Pharmacol. 25: 1595.Google Scholar
  14. Byus, C. V., Wicks, W. D., and Russell, D. H., 1976, Induction of omithine decarboxylase in Reuber H35 rat hepatoma cells, J. Cyclic Nucleotide Res. 2: 241.PubMedGoogle Scholar
  15. Castagna, M., Palmer, W. K., and Walsh, D. A., 1975, Nuclear protein kinase activity in perfused rat liver stimulated with dibutyryl-adenosine cyclic 3’,5’-monophosphate, Eur. J. Biochem. 55: 193.PubMedCrossRefGoogle Scholar
  16. Cohen, P., Watson, D. C., and Dixon, G. H., 1975, The hormonal control of activity of skeletal muscle phosphorylase kinase: Amino acid sequences at the two sites of action of adenosine 3’,5’-monophosphate-dependent protein kinase, Eur. J. Biochem. 51: 79.PubMedCrossRefGoogle Scholar
  17. Corbin, J. D., Keely, S. L., and Park, C. R., 1975a, The distribution and dissociation of cyclic adenosine 3’,5’-monophosphate-dependent protein kinase in adipose, cardiac and other tissues, J. Biol. Chem. 250: 218.PubMedGoogle Scholar
  18. Corbin, J. D., Keely, S. L., Soderling, T. R., and Park, C. R., 1975b, Hormonal regulation of adenosine 3’,5’-monophosphate-dependent protein kinase, in: Advances in Cyclic Nucleotide Research, Vol. 5 ( G. I. Drummond, P. Greengard, and G. A. Robison, eds.), pp. 265–279, Raven Press, New York.Google Scholar
  19. Costa, E., Chuang, D. M., Guidotti, A., and Uzunov, P., 1975, Cyclic 3’,5’-adenosine monophosphate-dependent molecular mechanism in the trans-synaptic induction of tyrosine hydroxylase in rat adrenal medulla, in: Chemical Tools in Catecholamine Research, Vol. II ( O. Almgren, A. Carlsson, and I. Engel, eds.), pp. 283–292, North-Holland, Amsterdam.Google Scholar
  20. Costa, E., Kurosawa, A., and Guidotti, A., 1976, Activation and nuclear translocation of protein kinase during transsynaptic induction of tyrosine 3-monooxygenase, Proc. Natl. Acad. Sci. U.S.A. 73: 1058.PubMedCrossRefGoogle Scholar
  21. Critchlow, W., and Bar-Sela, M. E., 1967, Control of the onset of puberty, in: Neuroendocrinology II ( L. Martini and W. F. Ganong, eds.), pp. 101–162, Academic Press, New York.Google Scholar
  22. Daane, T. A., and Parlow, A. F., 1971, Serum FSH and LH in constant light-induced persistent estrus: Short-term and long-term studies, Endocrinology 88: 964.PubMedCrossRefGoogle Scholar
  23. Dawson, A.B., and McCabe, M., 1951, The interstitial tissue of the ovary in infantile and juvenile rats, J. Morphol. 88: 543.CrossRefGoogle Scholar
  24. DeAngelo, A. B., Schweppe, J. S., Jungmann, R. A., Huber, P., and Eppenberger, U., 1975, Ovarian cyclic adenosine monophosphate-dependent protein kinase activity: Ontogeny and effect of gonadotropins, Endocrinology 97: 1509.PubMedCrossRefGoogle Scholar
  25. DeRubertis, F. R., and Craven, P. A., 1976, Hormonal modulation of cyclic adenosine 3’,5’-monophosphate-dependent protein kinase activity in rat renal cortex: Specificity of enzyme translocation, J. Clin. Invest. 57: 1442.PubMedCrossRefGoogle Scholar
  26. Dokas, L. A., and Kleinsmith, L. J., 1971, Adenosine 3’,5’-monophosphate increases capacity for RNA synthesis in rat liver nuclei, Science 172: 1237.PubMedCrossRefGoogle Scholar
  27. Dokas, L. A., Botney, D. M., and Kleinsmith, L. J., 1973, Increased RNA synthesis in nuclei isolated from rat liver tissue slices incubated with cyclic adenosine 3’,5’monophosphate or glucagon, Arch. Biochem. Biophys. 159: 712.CrossRefGoogle Scholar
  28. Falck, B., 1953, Occurrence of cholesterol and formation of oestrogen in the infantile ovary, Acta Endocrinol. 12: 115.PubMedGoogle Scholar
  29. Guidotti, A., Kurosawa, A., Chuang, D. M., and Costa, E., 1975, Protein kinase activation as an early event in the trans-synaptic induction of tyrosine 3-monooxygenase in adrenal medulla, Proc. Natl. Acad. Sci. U.S.A. 72: 1152.PubMedCrossRefGoogle Scholar
  30. Guidotti, A., Kurosawa, A., and Costa, E., 1976, Role of histone kinase activation and translocation in the mediation of the transsynaptic induction of tyrosine hydroxylase in rat adrenal medulla, in: Advances in Biochemical Psychopharmacology, Vol. 15 (E. Costa, E. Giacobini, and R. Paoletti,), pp. 544-574, Raven Press, New York.Google Scholar
  31. Hirsch, J., and Martelo, O. J., 1976, Phosphorylation of rat liver ribonucleic acid polymerase I by nuclear protein kinases, J. Biol. Chem. 251: 5408.PubMedGoogle Scholar
  32. Hisaw, F. L., 1947, Development of the Graafian follicle and ovulation, Physiol. Rev. 27: 95.Google Scholar
  33. Hunzicker-Dunn, M., and Birnbaumer, L., 1976, Adenylyl cyclase activities in ovarian tissues. III. Regulation of responsiveness to LH, FSH, and PGE1 in the pre-pubertal, cycling, pregnant, and pseudopregnant rat, Endocrinology 99: 198.PubMedCrossRefGoogle Scholar
  34. Hunzicker-Dunn, M., and Jungmami, R. A., 1978, Rabbit ovarian protein kinases. II. Effect of an ovulatory dose of hCG or LH on the multiplicity of follicular and luteal protein kinases, Endocrinology (in press).Google Scholar
  35. Insel, P. A., Boume, H. R., Coffino, P., and Tomkins, G. M., 1975, Cyclic AMP-dependent protein kinase: Pivotal role in regulation of enzyme induction and growth, Science 190: 896.PubMedCrossRefGoogle Scholar
  36. Johnson, E. M., Hadden, J. W., Inoue, A., and Allfrey, V. G., 1975, DNA binding by cyclic adenosine 3’,5’-monophosphate dependent protein kinase from calf thymus nuclei, Biochemistry 14: 3873.PubMedCrossRefGoogle Scholar
  37. Jost, J. P., and Sahib, M. K., 1971, Role of cyclic adenosine 3’,5’-monophosphate in the induction of hepatic enzymés. II. Effect of N6,O2-dibutyryl cyclic adenosine 3’,5’-monophosphate on the kinetics of ribonucleic acid synthesis in purified rat liver nuclei, J. Biol. Chem. 246: 1623.PubMedGoogle Scholar
  38. Jungmann, R. A., and Hiestand, P. C., 1973, Cyclic AMP-mediated binding of cyclic AMP-binding protein and protein kinase to nuclear acceptor sites, 56th Annual Miami Winter Symposium on Protein Phosphorylation in Control Mechanisms, January, 1973, Miami, Florida.Google Scholar
  39. Jungmann, R. A., and Kranias, E. G., 1977, Nuclear phosphoprotein kinases and the regulation of gene transcription, Int. J. Biochem. 8: 819.CrossRefGoogle Scholar
  40. Jungmann, R. A., and Russell, D. H., 1977, Cyclic AMP, cyclic AMP-dependent protein kinase, and the regulation of gene expression, Life Sci. 20: 1787.PubMedCrossRefGoogle Scholar
  41. Jungmann, R. A., and Schweppe, J. S., 1972a, Mechanism of action of gonadotropin. I. Evidence for gonadotropin-induced modifications of ovarian nuclear basic and acidic protein biosynthesis, phosphorylation, and acetylation, J. Biol. Chem. 247: 5535.Google Scholar
  42. Jungmann, R. A., and Schweppe, J. S., 1972b, Mechanism of action of gonadotropin. II. Control of ovarian nuclear ribonucleic acid polymerase activity and chromatin template capacity, J. Biol. Chem. 247: 5543.PubMedGoogle Scholar
  43. Jungmann, R. A., Hiestand, P. C., and Schweppe, J. S., 1974a, Mechanism of action of gonadotropin. IV. Cyclic adenosine monophosphate-dependent translocation of ovarian cytoplasmic cyclic adenosine monophosphate-binding protein and protein kinase to nuclear acceptor sites, Endocrinology 94: 168.PubMedCrossRefGoogle Scholar
  44. Jungmann, R. A., Hiestand, P. C., and Schweppe, J. S., 1974b, Adenosine 3’:5’monophosphate-dependent protein kinase and the stimulation of ovarian nuclear ribonucleic acid polymerase activities, J. Biol. Chem. 249: 5444.PubMedGoogle Scholar
  45. Jungmann, R. A., Lee, S. G., and DeAngelo, A. B., 1975, Translocation of cytoplasmic protein kinase and cyclic adenosine monophosphate-binding protein to intracellular acceptor sites, in: Advances in Cyclic Nucleotide Research, Vol. 5 (G. I. Drummond, P. Greengard, and G. A. Robison, ), pp. 281-306, Raven Press, New York.Google Scholar
  46. Keely, S. L., Jr., Corbin, J. D., and Park, C. R., 1975, On the question of translocation of heart cAMP-dependent protein kinase, Proc. Natl. Acad. Sci. U.S.A. 72: 1501.PubMedCrossRefGoogle Scholar
  47. Kemp, B. E., Bylund, D. B., Huang, T. S., and Krebs, E. G., 1975, Substrate specificity of the cyclic AMP-dependent protein kinase, Proc. Natl. Acad. Sci. U.S.A. 72: 3448.PubMedCrossRefGoogle Scholar
  48. Kleinsmith, L. J., 1975, Phosphorylation of non-histone proteins in the regulation of chromosome structure and function, J. Cell. Physiol. 85: 459.PubMedCrossRefGoogle Scholar
  49. Kolena, J., 1976, Ontogenic development of the responsiveness in cAMP synthesis to LH and PGE1 and gonadotropin receptors in the rat ovary, Biol. Neonate 29.Google Scholar
  50. Kranias, E. G., and Jungmann, R. A., 1977, Phosphorylation of calf thymus RNA polymerase II by nuclear cyclic 3’,5’-AMP-independent protein kinase, Biochim. Biophys. Acta 517:439.Google Scholar
  51. Kranias, E. G., Schweppe, J. S., and Jungmann, R. A., 1977, Phosphorylative and functional modifications of nucleoplasmic RNA polymerase II by homologous adenosine 3’:5’-monophosphate-dependent protein kinase from calf thymus and by heterologous phosphates, J. Biol. Chem. 252: 6750.PubMedGoogle Scholar
  52. Kuo, J. F., and Greengard, P., 1969, Cyclic nucleotide-dependent protein kinases. IV. Widespread occurrence of adenosine 3’,5’-monophosphate-dependent protein kinase in various tissues and phyla of the animal kingdom, Proc. Natl. Acad. Sci. U.S.A. 64:1349.Google Scholar
  53. Kurosawa, A., Guidotti, A., and Costa, E., 1976a, Induction of tyrosine 3-monooxygenase in adrenal medulla: Role of protein kinase activation and translocation, Science 193: 691.PubMedCrossRefGoogle Scholar
  54. Kurosawa, A., Guidotti, A., and Costa, E., 1976b, Induction of tyrosine 3-monooxygenase elicited by carbamylcholine in intact and denervated adrenal medulla: Role of protein kinase activation and translocation, Mol. Pharmacol. 12: 420.PubMedGoogle Scholar
  55. Lamprecht, S. A., Zor, U., Tsafriri, A., and Lindner, H. R., 1973, Action of prostaglandin E2 and of luteinizing hormone on ovarian adenylate cyclase, protein kinase and ornithine decarboxylase activity during postnatal development and maturity in the rat, J. Endocrinol 57: 217.PubMedCrossRefGoogle Scholar
  56. Langan, T. A., 1969a, Phosphorylation of liver histone following the administration of glucagon and insulin, Proc. Natl. Acad. Sci. U.S.A. 64:1276.Google Scholar
  57. Langan, T. A., 1969b, Action of adenosine 3’,5’-monophosphate-dependent histone kinase in vivo, J. Biol. Chem. 244: 5763.PubMedGoogle Scholar
  58. Langan, T. A., 1973, Protein kinases and protein kinase substrates, in: Advances in Cyclic Nucleotide Research, Vol. 3 ( P. Greengard and G. A. Robison, eds.), pp. 99–153, Raven Press, New York.Google Scholar
  59. Lee, C. Y., and Ryan, R. J., 1974, Estrogen stimulation of human chorionic gonadotropin binding by luteinized rat ovarian slices, Endocrinology 95: 1691.PubMedCrossRefGoogle Scholar
  60. Lee, P. C., Radloff, D., Schweppe, J. S., and Jungmann, R. A., 1976, Testicular protein kinases: Characterization of multiple forms and ontogeny, J. Biot. Chem. 251: 914.Google Scholar
  61. O’Neill, J. P., Schröder, C. H., Riddle, J. C., and Hsie, A. W., 1976, The cell cycle specificity of the morphological conversion of Chinese hamster ovary cells by N6,02dibutyryl cyclic adenosine 3’,5’-phosphate, Exp. Cell Res. 97: 213.PubMedCrossRefGoogle Scholar
  62. Palmer, W. K., Castagna, M., and Walsh, D. A., 1974, Nuclear protein kinase activity in glucagon-stimulated perfused rat livers, Biochem. J. 143: 469.PubMedGoogle Scholar
  63. Perkins, J. P., 1973, Adenyl cyclase, in: Advances in Cyclic Nucleotide Research, Vol. 3 ( P. Greengard and G. A. Robison, eds.), pp. 1–64, Raven Press, New York.Google Scholar
  64. Peters, H., Byskov, A. G., and Faher, M., 1973, Intraovarian regulation of follicle growth in the immature mouse, in: The Development and Maturation of the Ovary and Its Functions ( H. Peters, ed.), pp. 20–23, Excerpta Medica, Amsterdam.Google Scholar
  65. Pisarev, M. A., DeGroot, L. J., and Wilber, J. F., 1970, Cyclic AMP production in goiter, Endocrinology 87: 339.PubMedCrossRefGoogle Scholar
  66. Porter, K. R., Puck, T. T., Hsie, A. W., and Kelley, D., 1974, An electron microscope study of the effects of dibutyryl cyclic AMP on Chinese hamster ovary cells, Cell 2: 145.PubMedCrossRefGoogle Scholar
  67. Price, D., and Ortiz, E., 1944, The relation of age to reactivity in the reproductive system of the rat, Endocrinology 34: 215.CrossRefGoogle Scholar
  68. Rennels, E. G., 1951, Influence of hormones on the histochemistry of ovarian interstitial tissue in the immature rat, Am. J. Anat. 88: 63.PubMedCrossRefGoogle Scholar
  69. Richards, J. S., and Midgley, A. R., Jr., 1976, Protein hormone action: A Key to understanding ovarian follicular and luteal cell development, Biol. Reprod. 14: 82.PubMedCrossRefGoogle Scholar
  70. Robison, G. A., Butcher, R. W., and Sutherland, E. W., 1968, Cyclic AMP, Annu. Rev. Biochem. 37: 149.PubMedCrossRefGoogle Scholar
  71. Rosen, O. M., Erlichman, J., and Rubin, C. S., 1975, Molecular structure and characterization of bovine heart protein kinase, in: Advances in Cyclic Nucleotide Research, Vol. 5 ( G. I. Drummond, P. Greengard, and G. A. Robison, eds.), pp. 253–263, Raven Press, New York.Google Scholar
  72. Rubin, C. S., and Rosen, O. M., 1975, Protein phsophorylation, Annu. Rev. Biochem. 44: 831.PubMedCrossRefGoogle Scholar
  73. Russell, D. H., and Byus, C. V., 1976, Ornithine decarboxylase: Transsynaptic induction in the adrenal medulla, in: Advances in Biochemical Psychopharmacology, Vol. 15 ( E. Costa, E. Giacobini, and R. Paoletti, eds.), pp. 445–454, Raven Press, New York.Google Scholar
  74. Russell, D. H., 1978, Type I cyclic AMP-dependent protein kinase as a positive effector of growth, in: Advances in Cyclic Nucleotide Research, Vol. 9 ( W. J. George and L. J. Ignarro, eds.), pp. 493–506, Raven Press, New York.Google Scholar
  75. Salomon, Y., Yanovsky, A., Mintz, Y., Amir, Y., and Lindner, H.R., 1977, Synchronous generation of ovarian hCG binding sites and LH-sensitive adenylate cyclase in immature rats following treatment with pregnant mare serum gonadotropin, J. Cyclic Nucleotide Res. 3 :163–176.Google Scholar
  76. Sharma, S. K., and Talwar, G. P., 1970, Action of cyclic adenosine 3’,5’-monophosphate in vitro on the uptake and incorporation of uridine into ribonucleic acid in ovariectomized rat uterus, J. Biol. Chem. 245: 1513.PubMedGoogle Scholar
  77. Shea, M., and Kleinsmith, L. J., 1973, Template specific stimulation of RNA synthesis by phosphorylated nonhistone chromatin proteins, Biochem. Biophys. Res. Commun. 50: 473.PubMedCrossRefGoogle Scholar
  78. Soewoto, H., Cheng, H. C., and Johnson, D. C., 1977, Evidence for macromolecular synthesis in stimulation of the estrogen synthesizing system of the immature rat ovary by PMS, Steroids 29: 349.PubMedCrossRefGoogle Scholar
  79. Spielvogel, A. M., Mednieks, M. I., Eppenberger, U., and Jungmann, R. A., 1977, Evidence for the identity of nuclear and cytoplasmic adenosine-3’:5’-monophosphatedependent protein kinase from porcine ovaries and nuclear translocation of the cytoplasmic enzyme, Eur. J. Biochem. 73: 199.PubMedCrossRefGoogle Scholar
  80. Stein, G. S., Spelsberg, T. C., and Kleinsmith, L. J., 1974, Nonhistone chromosomal proteins and gene regulation, Science 183: 817.PubMedCrossRefGoogle Scholar
  81. Steiner, A. L., Koide, Y., Earp, H. S., Bechtel, P. J., and Beavo, J. A., 1978, Compartmentalization of cyclic nucleotides and cyclic AMP dependent protein kinases in rat liver: Immunocytochemical demonstration, in: Advances in Cyclic Nucleotide Research, Vol.9 ( W. J. George and L. J. Ignarro, eds.), pp. 691–706, Raven Press, New York.Google Scholar
  82. Sugawara, S., and Takeuchi, S., 1970, Ovulatory response to a single dose of human chorionic gonadotropin in the immature rat, Endocrinology 86: 965.PubMedCrossRefGoogle Scholar
  83. Sutherland, E. W., and Rall, T. W., 1960, The relation of the adenosine 3’,5’-monophosphate and phosphorylase to the actions of catecholamines and other hormones, Pharmacol. Rev. 12: 265.Google Scholar
  84. Teng, C. S., Teng, C. T., and Allfrey, V. G., 1971, Studies of nuclear acidic proteins: Evidence for their phosphorylation, tissue specificity, selective binding to deoxyribonucleic acid, and stimulatory effects on transcription, J. Biol. Chem. 246: 3597.PubMedGoogle Scholar
  85. Varrone, S., Ambesi-Impiombato, F. S., and Macchia, V., 1972, Stimulation by cyclic 3’,5’-adenosine monophosphate of RNA synthesis in a mammalian cell-free system, FEBS Lett. 21: 99.PubMedCrossRefGoogle Scholar
  86. Wagner, K., Roper, M. D., Leichtling, B. H., Wimalasena, J., and Wicks, W. D., 1975, Effects of 6- and 8-substituted analogs of adenosine 3’:5’-monophosphate on phosphoenolpyruvate carboxykinase and tyrosine aminotransferase in hepatoma cell cultures, J. Biol. Chem. 250: 231.PubMedGoogle Scholar
  87. Walsh, D. A., Perkins, J. P., and Krebs, E. G., 1968, An adenosine 3’,5’-monophosphate- dependent protein kinase from rabbit skeletal muscle, J. Biol. Chem. 243: 3763.PubMedGoogle Scholar
  88. Wicks, W. D., Koontz, J., and Wagner, K., 1975, Possible participation of protein kinase in enzyme induction, J. Cyclic Nucleotide Res. 1: 49.Google Scholar
  89. Williams, R. E., 1976, Phosphorylated sites in substrates of intracellular protein kinases: A common feature in amino acid sequences, Science 192: 473.PubMedCrossRefGoogle Scholar
  90. Wilson, B. D., and Wright, R. L., 1970, Mechanism of TSH action: Effects of dibutyryl cyclic AMP on RNA synthesis in isolated thyroid cells, Biochem. Biophys. Res. Commun. 41: 217.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1978

Authors and Affiliations

  • Richard A. Jungmann
    • 1
  • Mary Hunzicker-Dunn
    • 1
  1. 1.Department of BiochemistryNorthwestern University Medical SchoolChicagoUSA

Personalised recommendations