Some Principles of Neuronal Regulation at the Postsynaptic Level

  • Jean-Pierre Changeux
Part of the Published Nobel Symposia book series (NOFS, volume 42)


To discuss in general terms five reports as different as those of Drs. Renaud, Labrie, Rodbell, Snyder and Terenius cannot be done without risks. The domains of research covered by these authors range from the physiology of the whole cell investigated by electrophysiological methods down to the characterization of receptor sites and receptor macromolecules. The danger is either to be too general and therefore useless or to be too precise but wrong. Our only hope is that some of the rules or principles uncovered with simple systems such as, at the cell level, the neuromuscular junction (1) or the fish electroplaque (2, 3) and, at the molecular level, the acetylcholine receptor protein may extend to the case of the CNS neuron and, more precisely, to the peptidergic neuron. This discussion is based on this analogy although it should be emphasized, at the very beginning, that important differences of course exist. What is true for the neuromuscular junction might be true for the chemical synapse in the CNS but distinctive features of the neuronal cell such as, for instance, its integrative properties, are certainly not shared by skeletal muscle or fish electro-plaque.


Neuromuscular Junction Receptor Site Receptor Molecule Membrane Fragment Agonist Binding 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Katz, B., Mac-Graw-Hill Book Co., New-York, 1966.Google Scholar
  2. 1a.
    Katz, B., and Miledi, R., In “Motor innervation of Muscle” (S. Thesleff, ed.) Academic press, London, New-York, San-Francisco, pp. 31–50, 1976.Google Scholar
  3. 2.
    Nacbmansohn, D., and Neumann, E., Chemical and Molecular basis of nerve activity, Academic Press, New-York, San-Francisco, London, 1975.Google Scholar
  4. 3.
    Heidmann, T., and Changeux, J.P., Ann. Rev. Biochem., 47: 371–441, 1978.CrossRefGoogle Scholar
  5. 4.
    Bennett, M.V.L., Synaptic transmission and neuronal interaction, Raven Press, New-York, pp. 153–178, 1974.Google Scholar
  6. 5.
    Llinas, R., Baker, R., and Sotelo, C., J. Neurophysiol., 37: 560–571, 1974.PubMedGoogle Scholar
  7. 6.
    Monod, J., Changeux, J.P., and Jacob, F., J. Mol. Biol., 6: 306–328, 1963.PubMedCrossRefGoogle Scholar
  8. 7.
    Changeux, J.P., In “Symmetry and Function of Biological Systems at the macromolecular Level” (A. Engström, and B. Strandberg, ed.), Nobel Symposium N° 11, Wiley Inter-Science Division, New York, pp. 235–256, 1969.Google Scholar
  9. 8.
    Gerhart, J.C., Curr. Top. Cell. Reg. 2: 275–325, 1970.Google Scholar
  10. 9.
    Changeux, J.P., Cold Spring Harb. Symp. Quant. Biol., 28: 497–504, 1963.CrossRefGoogle Scholar
  11. 10.
    Gerschenfeld, R., In “Synapses” (G.A. Cottrell, P.N.R. Usherwood, and Blackie, ed.) Glasgow, London, 1977.Google Scholar
  12. 11.
    Kuffler, S.W., and Nicholls, J.G., Sinaner Associates, Inc. Publishers, Sunderland, Mass., 1977.Google Scholar
  13. 12.
    Daly, J.W, Karle, J., Myers, C.W., Tokuyama, T., Walters, J.A., and Witkop, B., Proc. Nat. Acad. Sci. USA, 68: 1870–1875, 1971.PubMedCrossRefGoogle Scholar
  14. 13.
    Young, A.B., and Snyder, S.H., Proc. Nat. Acad. Sci. USA, 71, 4002–4005, 1974.PubMedCrossRefGoogle Scholar
  15. 14.
    Olsen, R.W., In “Gaba in Nervous System Function” (E. Roberts, T.N. Chase, and D.B. Tower, ed.) Raven Press, New-York, 1976.Google Scholar
  16. 15.
    Grünhagen, H., and Changeux, J.P., J. Mol. Biol., 106: 497–535, 1976.PubMedCrossRefGoogle Scholar
  17. 16.
    Sobel, A., Heidmann, T., and Changeux, J.P., C.R. Acad. Sci. Paris, 285 D: 1255–1258, 1977.Google Scholar
  18. 17.
    Sobel, A., Heidmann, T., Hof1er, J., and Changeux, J.P., Proc. Nat. Acad. Sci. USA, 75: 510–514, 1978.PubMedCrossRefGoogle Scholar
  19. 18.
    Monod, J., Wyman, J., and Changeux, J.P., J. Mol. Biol. 12, 88–118, 1965.PubMedCrossRefGoogle Scholar
  20. 19.
    Lee, C.Y., and Chang, C.C., Mem. Inst. Butantan Symp. Intern., 32: 555–572, 1966.Google Scholar
  21. 20.
    Changeux, J.P., Kasai, M., and Lee, C.Y., Proc. Nat. Acad. Sci. USA, 67: 1241–1247, 1970.PubMedCrossRefGoogle Scholar
  22. 21.
    Meunier, J.C., and Changeux, J.P., FEBS Letters, 32: 143–148, 1973.PubMedCrossRefGoogle Scholar
  23. 22.
    Changeux, J.P., Benedetti, L., Bourgeois, J.P., Brisson, A., Cartaud, J., Devaux, P., Grünhagen, H., Moreau, M., Popot, J.L., Sobel, A., and Weber, M., In “The Synapse” Cold Spring Harbor Symp. on quantitative Biology, Vol. XL, pp. 211–230, 1975.Google Scholar
  24. 23.
    Sugiyama, H., and Changeux, J.P., Eur. J. Biochem., 55: 505–515, 1975.PubMedCrossRefGoogle Scholar
  25. 24.
    Weber, M., David-Pfeuty, M.T., and Changeux, J.P., PNAS 72: 3443–3447, 1975.PubMedCrossRefGoogle Scholar
  26. 25.
    Grünhagen, H., Iwatsubo, M., and Changeux, J.P., Eur. J. Biochem, 80: 225–242, 1977.PubMedCrossRefGoogle Scholar
  27. 26.
    Heidmann, T., Iwatsubo, M., and Changeux, J.P., C.R. Acad. Sci. Paris, 284 D: 771–774, 1977.Google Scholar
  28. 27.
    Katz, B., and Thesleff, S., J. Physiol. London, 138: 63–80, 1957.PubMedGoogle Scholar
  29. 28.
    Heidmann, T., and Changeux, J.P., Eur. J. Biochem. (submitted), 1978.Google Scholar
  30. 29.
    Zieglgänsberger, W., and Bayerl, H., Brain Research, 115: 111–128, 1976.PubMedCrossRefGoogle Scholar
  31. 30.
    Miledi, R., and Potter, L.T., Nature, 233: 599–603, 1971.PubMedCrossRefGoogle Scholar
  32. 31.
    Hall, Z., and Reiness, C.G., Nature, 268: 655–657, 1977.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1979

Authors and Affiliations

  • Jean-Pierre Changeux
    • 1
  1. 1.Laboratoire de Neurobiologie de l’InstitutPasteur associé au CNRS et College DeParisFrance

Personalised recommendations