Regulation of the β-Adrenergic Receptor in the Pineal Gland and Red Cell Membranes

  • Julius Axelrod
Part of the Published Nobel Symposia book series (NOFS, volume 42)


The pineal gland and red cell membranes have served as useful models to study the β-adrenergic receptor and its regulation. The pineal gland has a specific β-adrenergic receptor that is stimulated by noradrenaline released from nerve terminals innervating this gland. Interaction of the pineal β-adrenergic receptor triggers a series of reactions that leads to the synthesis of the pineal specific hormone melatonin. The critical biochemical step that is controlled by the β-adrenergic receptor is the synthesis of the enzyme serotonin N-acetyltransferase. The enzyme forms the precursor for the melatonin forming enzyme, hydroxyindole-0-methyltransferase. The responsiveness of the β-adrenergic receptor and the consequent synthesis of melatonin depends on the prior exposure to catecholamines. Reduced release of noradrenaline causes supersensitivity while increased exposure to catecholamine agonists results in a rapid subsensitivity. Changes in sensitivity is found not only in the β-adrenergic receptor but also in adenylate cyclase, protein kinase and other subcellular events.


Membrane Fluidity Adrenergic Receptor Pineal Gland Pineal Cell Neurotransmitter Noradrenaline 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Axelrod, J.: Science 184, 1341–1348, 1974.PubMedCrossRefGoogle Scholar
  2. Axelrod, J., Shein, H.M., and Wurtman, R.J.: Proc. Natl. Acad. Sci. USA 62, 544–549, 1969.PubMedCrossRefGoogle Scholar
  3. Deguchi, T., and Axelrod, J.: Proc. Natl. Acad. Sci. USA 69, 2547–2550, 1972.PubMedCrossRefGoogle Scholar
  4. Deguchi, T., and Axelrod, J.: Proc. Natl. Acad. Sci. USA 70, 2411–2414, 1973.PubMedCrossRefGoogle Scholar
  5. Hirata, F., and Axelrod, J.: Proc. Natl. Acad. Sci. USA, 75, 1718–1721, 1978.PubMedCrossRefGoogle Scholar
  6. Hirata, F., Viveros, O.H., Diliberto, Jr., E.J., and Axelrod, J.: Proc. Natl. Acad. Sci. USA, 1978, in press.Google Scholar
  7. Kappers, J.A.: Z. Zellforsch. Mikrosk. Anat. 52, 163–215, 1960.PubMedCrossRefGoogle Scholar
  8. Kebabian, J.W., Zatz, M., Romero, J.A., and Axelrod, J.: Proc. Natl. Acad. Sci. USA 72, 3735–3739, 1975.PubMedCrossRefGoogle Scholar
  9. Klein, D.C., Berg, G.R., and Weller, J.L.: Science 168, 979–980, 1970.PubMedCrossRefGoogle Scholar
  10. Klein, D.C., and Weiler, J.L.: Science 169, 1093–1095, 1970.PubMedCrossRefGoogle Scholar
  11. Lefkowitz, R.J., Mukherjee, C., Coverstone, M., and Caron, M.C.: Biochem. Biophys. Res. Commun. 60, 703–709, 1974.PubMedCrossRefGoogle Scholar
  12. Romero, J.A., and Axelrod, J.: Proc. Natl. Acad. Sci. USA 72, 1661–1665, 1975.PubMedCrossRefGoogle Scholar
  13. Zatz, M.: Life Sci. 21, 1267–1276, 1977.PubMedCrossRefGoogle Scholar
  14. Zatz, M., Kebabian, J.W., Romero, J.A., Lefkowitz, R.J., and Axelrod, J.: J. Pharmacol. Exp. Ther. 196, 714–722, 1976.PubMedGoogle Scholar
  15. Zatz, M., and O’Dea, R.F.: J. Cyclic Nucleotide Res. 2, 427–439, 1976.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1979

Authors and Affiliations

  • Julius Axelrod
    • 1
  1. 1.Laboratory of Clinical ScienceNIMHBethesdaUSA

Personalised recommendations