Use of Teratocarcinoma Stem Cells as a Model System for the Study of X-Chromosome Inactivation In Vitro

  • Gail R. Martin
  • Charles J. Epstein
  • David W. MartinJr.
Part of the Basic Life Sciences book series (BLSC, volume 12)


One of the main obstacles to the study of the mechanism of X-chromosome differentiation or “X inactivation” is the difficulty of obtaining a population of embryonic cells in which both X chromosomes are functioning. The primary reason for this is that male embryos cannot be easily distinguished from female embryos, and therefore half of any random population of embryos will be males that contain only one X chromosome. Furthermore, since it is now apparent that X inactivation probably does not occur in all the cells of the embryo at the same time, there would be the additional difficulty of identifying and separating those cells in which both X chromosomes are active, even if a pure population of female embryos could be obtained. Since teratocarcinoma stem cells are closely similar to normal early embryonic cells and they are available in almost unlimited quantities, the goal of the research described here was to determine whether it might be possible to use clonal cultures of female teratocarcinoma stem cells, in place of embryonic cells, to study the phenomenon of X-chromosome inactivation. The results of this study have been described previously (Martin, Epstein, Travis, Tucker, Yatziv, Martin, Clift, and Cohen 1978).


Embryoid Body Tumor Stem Cell Embryonal Carcinoma Cell Teratocarcinoma Cell Female Embryo 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Baikie, A. G., P. B. Loder, G. C. De Grouchy and D. B. Pitt. 1965. Phosphohexokinase activity of erythrocytes in mongolism: another possible marker for chromosome 21. Lancet 1, 412–414.PubMedCrossRefGoogle Scholar
  2. Bernstine, E. G., L. B. Russell and C. S. Cain. 1978. Effect of gene dosage on the expression of mitochondrial malic enzyme activity in the mouse. Nature 271: 748–750.PubMedCrossRefGoogle Scholar
  3. Brinster, R. L. 1974. The effect of cells transferred into the mouse blastocyst on subsequent development. J. Exp. Med. 140: 1049–1056.PubMedCrossRefGoogle Scholar
  4. Brinster, R. L. 1975. Can teratocarcinoma cells colonize the mouse embryo? In Roche Symposium on Teratomas and Differentiation, M. Sherman and D. Solter, Eds. Academic Press, New York, pp. 51–58.Google Scholar
  5. Chapman, V. M. and T. B. Shows. 1976. Somatic cell genetic evidence for X-chromosome linkage of three enzymes in the mouse. Nature 259: 665–667.PubMedCrossRefGoogle Scholar
  6. Chapman, V. M., J. D. West and D. A. Adler. 1978. Bimodal distribution of α-galactosidase activities in mouse embryos. In Genetic Mosaics and Chimeras in Mammals, Liane B. Russell, Ed., Plenum Press, New York and London.Google Scholar
  7. Damjanov, I. and D. Solter. 1974. Host-related factors determine the outgrowth of teratocarcinomas from mouse egg-cylinders. Z. Krebsforsch. 81: 63–69.CrossRefGoogle Scholar
  8. Davidson, R. G., H. M. Nitowsky and B. Childs. 1963. Demonstrations of two populations of cells in the human female heterozygous for glucose-6-phosphate dehydrogenase variants. Proc. Nat. Acad. Sci. USA 50: 481–485.PubMedCrossRefGoogle Scholar
  9. DeMars, R., S. L. LeVan, B. L. Trend and L. B. Russell. 1976. Abnormal ornithine carbamoyltransferase in mice having the sparse-fur mutation. Proc. Nat. Acad. Sci. USA 73: 1693–1697.PubMedCrossRefGoogle Scholar
  10. Dewey, M. J., D. W. Martin Jr., G. R. Martin and B. Mintz. 1977. Mosaic mice with teratocarcinoma-derived mutant cells deficient in hypoxanthine phosphoribosyl transferase. Proc. Nat. Acad. Sci. USA 74: 5564–5568.PubMedCrossRefGoogle Scholar
  11. Eicher, E. M. and D. L. Coleman. 1977. Influence of gene duplication and X-inactivation on mouse mitochondrial malic enzyme activity and electrophoretic patterns. Genetics 85: 647–658.PubMedGoogle Scholar
  12. Eppig, J. J., L. P. Kozak, E. M. Eicher, and L. C. Stevens. 1977. Ovarian teratomas in mice are derived from oocytes that have completed the first meiotic division. Nature 269: 517–518.PubMedCrossRefGoogle Scholar
  13. Epstein, C. J. 1969. Mammalian oocytes: X-chromosome activity. Science 163: 1078–1079.PubMedCrossRefGoogle Scholar
  14. Epstein, C. J. 1972. Expression of the mammalian X-chromosome before and after fertilization. Science 175: 1467–1468.PubMedCrossRefGoogle Scholar
  15. Epstein, C. J., G. Tucker, B. Travis and A. Gropp. 1977. Gene dosage for isocitrate dehydrogenase in mouse embryos trisomie for chromosome 1. Nature 247: 615–616.CrossRefGoogle Scholar
  16. Epstein, C. J., S. Smith, B. Travis and G. Tucker. 1978a. Both X-chromosomes function prior to X-chromosome inactivation in female mouse embryos. Nature, in press.Google Scholar
  17. Epstein, C. J., B. Travis, G. Tucker and S. Smith. 1978b. The direct demonstration of an X-chromosome dosage effect prior to inactivation. In Genetic Mosaics and Chimeras in Mammals, Liane B. Russell, Ed., Plenum Press, New York and London.Google Scholar
  18. Evans, M. J. and G. R. Martin. 1975. The differentiation of clonal teratocarcinoma cell cultures in vitro. In Roche Symposium on Teratomas and Differentiation, M. Sherman and D. Solter, Eds., Academic Press, New York, pp. 237–250.Google Scholar
  19. Feaster, W. W., L. Kwok and C. J. Epstein. 1977. Dosage effects for superoxide dismutase-1 in nucleated cells aneuploid for chromosome 21. Amer. J. Hum. Genet. 24: 563–570.Google Scholar
  20. Gartler, S. M. and R. J. Andina. 1976. Mammalian X-chromosome inactivation. Adv. in Hum. Genet. 7: 99–140.Google Scholar
  21. Gartler, S. M., R. M. Liskay, B. K. Campbell, R. Sparkes and N. Gant. 1972. Evidence for two functional X-chromosomes in human oocytes. Cell Differ. 1: 215–218.PubMedCrossRefGoogle Scholar
  22. George, D. L. and U. Francke. 1976. Gene dosage effect: regional mapping of human nucleoside Phosphorylase on chromosome 14. Science 194: 851–852.PubMedCrossRefGoogle Scholar
  23. Graham, C. F. 1977. Teratocarcinoma cells and normal mouse em-bryogenesis. In Concepts in Mammalian Embryogenesis, M. Sherman, Ed., MIT Press, Cambridge, Mass., pp. 315–394.Google Scholar
  24. Iles, S. A., M. W. McBurney, S. R. Bramwell, Z. A. Deussen and C. F. Graham. 1975. Development of parthenogenetic and fertilized mouse embryos in the uterus and in extrauterine sites. J. Embryol. exp. Morph. 34: 387–405.PubMedGoogle Scholar
  25. Illmensee, Karl. 1978, Reversion of malignancy and normalized differentiation of teratocarcinoma cells in chimeric mice. In, Genetic Mosaics and Chimeras in Mammals, Liane B. Russell, Ed. Plenum Press, New York and London.Google Scholar
  26. Illmensee, K. and B. Mintz. 1976. Totipotency and normal differentiation of single teratocarcinoma cells cloned by injection into blastocysts. Proc. Nat. Acad. Sci. USA 73: 549–553.PubMedCrossRefGoogle Scholar
  27. Kozak, L. P. and P. J. Quinn. 1975. Evidence for dosage compensation of an X-linked gene in the 6-day embryo of the mouse. Devel. Biol. 45: 65–73.CrossRefGoogle Scholar
  28. Kozak, L. P., G. K. McLean and E. M. Eicher. 1974. X-linkage of phosphoglycerate kinase in the mouse. Biochem. Genet. 11: 41–47.PubMedCrossRefGoogle Scholar
  29. Kozak, C., E. Nichols and F. H. Ruddle. 1975. Gene linkage analysis in the mouse by somatic cell hybridization: assignment of adenine phosphoribosyltransferase to chromosome 8 and α-galactosi-dase to the X chromosome. Somatic Cell Genet. 1: 371–382.PubMedCrossRefGoogle Scholar
  30. Kratzer, P. G. and S. M. Gartler. 1978. HGPRT expression in early mouse development. In, Genetic Mosaics and Chimeras in Mammals, Liane B. Russell, Ed., Plenum Press, New York and London.Google Scholar
  31. Lyon, M. F. 1972. X-chromosome inactivation and developmental patterns in mammals. Biol. Rev. 47: 1–35.PubMedCrossRefGoogle Scholar
  32. Magenis, R. E., R. D. Koler, E. Lovrien, R. H. Bigley, M. C. DuVal and K. M. Overton. 1975. Gene dosage: evidence for assignment of erythrocyte acid phosphatase locus to chromosome 2. Proc. Nat. Acad. Sci. USA 72: 4526–4530.PubMedCrossRefGoogle Scholar
  33. Mangia, F., G. Abbo-Halbasch and C. J. Epstein. 1975. X-chromosome expression during oogenesis in the mouse. Devel. Biol. 45: 366–368.CrossRefGoogle Scholar
  34. Marimo, B. and F. Giannelli. 1975. Gene dosage effect in human trisomy 16. Nature 256: 204–206.PubMedCrossRefGoogle Scholar
  35. Martin, G. R. 1975. Teratocarcinomas as a model system for the study of embryogenesis and neoplasia: Review. Cell 5: 229–243.PubMedCrossRefGoogle Scholar
  36. Martin, G. R. 1978. Advantages and limitation of teratocarcinoma stem cells as models of development. In, Development in Mammals, Vol. 3, M. Johnson ed, Elsevier/North-Holland Biomedical Press, in press.Google Scholar
  37. Martin, G. R., C. J. Epstein, B. Travis, G. Tucker, S. Yatziv, D. W. Martin Jr., S. Clift, and S. Cohen. 1978a. X-chromosome inactivation during differentiation of female teratocarcinoma stem cells in vitro. Nature 271: 329–333.PubMedCrossRefGoogle Scholar
  38. Martin, G. R. and M. J. Evans. 1975a. The differentiation of clonal lines of teratocarcinoma cells: formation of embryoid bodies in vitro. Proc. Nat. Acad. Sci. USA 72,: 1441–1445.PubMedCrossRefGoogle Scholar
  39. Martin, G. R. and M. J. Evans. 1975b. The formation of embryoid bodies in vitro by homogeneous embryonal carcinoma cell cultures derived from isolated single cells. In, Roche Symposium on Teratomas and Differentiation, M. Sherman and D. Solter, Eds. Academic Press, New York, pp. 169–187.Google Scholar
  40. Martin, G. R., S. Smith, and C. J. Epstein. 1978b. Protein synthetic patterns in teratocarcinoma stem cells and mouse embryos at early stages of development. Devel. Biol., in press.Google Scholar
  41. Martin, G. R., L. M. Wiley and I. Damjanov. 1977. The development of cystic embryoid bodies in vitro from clonal teratocarcinoma stem cells. Devel. Biol. 61: 230–244.CrossRefGoogle Scholar
  42. McBurney, M. W. and E. D. Adamson. 1976. Studies on the activity of the X chromosomes in female teratocarcinoma cells in culture. Cell 9: 57–70.PubMedCrossRefGoogle Scholar
  43. Migeon, B. R. and K. Jelalian. 1977. Evidence for two active X chromosomes in germ cells of female before meiotic entry. Nature 269: 242–243.PubMedCrossRefGoogle Scholar
  44. Mintz, B. and K. Illmensee. 1975. Normal genetically mosaic mice produced from malignant teratocarcinoma cells. Proc. Nat. Acad. Sci. USA 72: 3585–3589.PubMedCrossRefGoogle Scholar
  45. Monk, Marilyn. 1978. Biochemical studies on X-chromosome activity in preimplantâtion mouse embryos. In Genetic Mosaics and Chimeras in Mammals, Liane B. Russell, Ed., Plenum Press, New York and London.Google Scholar
  46. Mouse News Letter 56: 4–28, 1977.Google Scholar
  47. Nielson, J. T. and V. M. Chapman. 1977. Electrophoretic variation for X-chromosome-linked phosphoglycerate kinase (PGK-1) in the mouse. Genetics 87: 319–325.Google Scholar
  48. Papaioannou, V. E., M. W. McBurney, R. L. Gardner and M. J. Evans. 1975. Fate of teratocarcinoma cells injected into early mouse embryos. Nature 258: 70–73.PubMedCrossRefGoogle Scholar
  49. Papaioannou, V. E., R. L. Gardner, M. W. McBurney, C. Babinet and M. J. Evans. 1978. Participation of cultured teratocarcinoma cells in mouse embryogenesis. J. Embryol. Exp. Morph., in press.Google Scholar
  50. Pierce, G. B. and F. J. Dixon. 1959. Testicular teratomas. I. Demonstration of teratogenesis by metamorphosis of multipotential cells. Cancer 12: 573–583.PubMedCrossRefGoogle Scholar
  51. Solter, D., N. Skreb and I. Damjanov. 1970. Extrauterine growth of mouse egg cylinders results in malignant teratoma. Nature 227: 503–504.PubMedCrossRefGoogle Scholar
  52. Stevens, L. C. 1959. Embryology of testicular teratomas in strain 129 mice. J. Nat. Cancer Inst. 23: 1249–1295.PubMedGoogle Scholar
  53. Stevens, L. C. 1968. The development of teratomas from intra-testicular grafts of tubal mouse eggs. J. Embryol. Exp. Morph. 20: 329–341.PubMedGoogle Scholar
  54. Stevens, L. C. 1970. The development of transplantable terato-carcinomas from intratesticular grafts of pre- and postimplantation mouse embryos. Develop. Biol. 21: 364–382.PubMedCrossRefGoogle Scholar
  55. Stevens, L. C. 1975. Comparative development of normal and parthenogenetic mouse embryos, early testicular and ovarian teratomas, and embryoid bodies. In Roche Symposium on Teratomas and Differentiation, M. Sherman and D. Solter, Eds., Academic Press, New York, pp. 17–32.Google Scholar
  56. Stevens, L. C. and D. S. Varnum. 1974. The development of teratomas from parthenogenetically activated ovarian mouse eggs. Devel. Biol. 37: 369–380.CrossRefGoogle Scholar
  57. Takagi, N. and M. Sasaki. 1975. Preferential inactivation of the paternally derived X chromosome in the extraembryonic membranes of the mouse. Nature 256: 640–642.PubMedCrossRefGoogle Scholar
  58. West, J. D., W. I. Frels and V. M. Chapman. 1977. Preferential expression of the maternally derived X-chromosome in the mouse yolk sac. Cell 12: 873–882.PubMedCrossRefGoogle Scholar
  59. Yen, R. C. K., W. B. Adams, C. Lazar and M. A. Becker. 1978. Evidence for X-linkage of human phosphoribosylpyrophosphate synthetase. Proc. Nat. Acad. Sci. USA 75: 482–485.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1978

Authors and Affiliations

  • Gail R. Martin
    • 1
  • Charles J. Epstein
    • 2
  • David W. MartinJr.
    • 3
  1. 1.Department of Anatomy and Cancer Research InstituteUniversity of CaliforniaSan FranciscoUSA
  2. 2.Departments of Pediatrics and of Biochemistry and BiophysicsUniversity of CaliforniaSan FranciscoUSA
  3. 3.Departments of Medicine and of Biochemistry and BiophysicsUniversity of CaliforniaSan FranciscoUSA

Personalised recommendations