Advertisement

Why not Androgynes among Mammals?

  • Susumu Ohno
Part of the Basic Life Sciences book series (BLSC, volume 12)

Abstract

It is a curious fact that man through the ages appears to have been fascinated by the idea of finding a creature who is made of the right half of a man and the left half of a woman fused into one. In medievaldrawings and paintings, such a creature was called an androgyne (Fig. 1). Although, on rare occasions, lateral true hermaphrodites do occur — having an ovary and Müllerian-duct derivatives on one side, and a testis and Wolffian-duct derivatives on the other — such a vertical midline split is confined strictly to the “innards.” There is no left-right asymmetry in their external sexual development. Their circulating testosterone levels uniformly determine the extent of masculine manifestation; e.g., beard growth, penis size, etc. While their circulating estradiol levels control the extent of postpubertal feminine manifestation; e.g., breast fullness, hip roundness, etc. In mammals, XX and XY cells are equally responsive to testosterone and estradiol. Thus, depiction of the androgyne as only a figment of wildly unrealistic imagination illustrates that, in truth, there is total hormonal dependence of the mammalian secondary sex-determining mechanism.

Keywords

Urogenital Sinus Wolffian Duct MUllerian Duct Fetal Testis Gonadal Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cattanach, B. M., C. E. Pollard and S. G. Hawkes. 1971. Sex-reversed mice: XX and XO males. Cytogenetics 10: 318–327.PubMedCrossRefGoogle Scholar
  2. Cunha, R. 1972. Tissue interactions between epithelium and mesenchyme of urogenital and integumental origin. Anat. Rec. 172: 529–542.PubMedCrossRefGoogle Scholar
  3. Drews, U., S. R. Blecher, D. A. Owen and S. Ohno. 1974. Genetically directed preferential X-activation seen in mice. Cell 1: 3–8.CrossRefGoogle Scholar
  4. Drews, U. and U. Drews. 1975. Metabolic cooperation between Tfm and wild-type cells in mosaic mice after induction of DNA synthesis. Cell 6: 475–479.CrossRefGoogle Scholar
  5. Evans, E. P., C. E. Ford and M. F. Lyon. 1977. Direct evidence of the capacity of XY germ cells in the mouse to become an oäcyte. Nature 267: 430–431.PubMedCrossRefGoogle Scholar
  6. Fredga, K., A. Gropp, H. Winking and F. Frank. 1976. Fertile XX-and XY-type females in the wood lemming (Myopus schisticolor). Nature 261: 255–257.CrossRefGoogle Scholar
  7. Grobstein, C. 1967. Mechanism of organogenetic tissue interaction. Nat. Cancer Inst. Monogr. 26: 279–299.PubMedGoogle Scholar
  8. Hotta, Y. and S. Benzer. 1976. Courtship in Drosophila mosaics and sex-specific foci for sequential behavior pattern. Proc. Nat. Acad. Sci. USA 73: 4154–4158.PubMedCrossRefGoogle Scholar
  9. Josso, N., J. Y. Picard and D. Tran. 1977. The anti-Müllerian hormone. In (R. J. Blandau and D. Bergsma, eds.) Morphogenesis and Malformation of the Genital System, National Foundation Original Article Series, Vol. 8, pp. 59–84. Alan R. Liss, Inc., New York.Google Scholar
  10. Jost, A. 1947a. Sur les effets de la castration précoce de l’embryon mâle de lapin. C. R. Soc. Biol. (Paris) 141: 126–219.Google Scholar
  11. Jost, A. 1947b. Action de la testostérone sur l’embryon maie castré de lapin. C. R. Soc. Biol. (Paris) 141: 275–276.Google Scholar
  12. Kratochwil, K. and P. Schwartz. 1976. Tissue interaction in androgen response of embryonic mammary rudiment of mouse: Identification of target tissue for testosterone. Proc. Nat. Acad. Sci. USA 173: 4041–4044.CrossRefGoogle Scholar
  13. Lyon, M. F. 1961. Gene action in the X-chromosome of the mouse (Mus musculus L.). Nature 190: 372–373.PubMedCrossRefGoogle Scholar
  14. Lyon, M. F. and S. G. Hawkes. 1970. An X-linked gene for testicular feminization of the mouse. Nature 227: 1217–1219.PubMedCrossRefGoogle Scholar
  15. Ohno, S. 1976. Major regulatory genes for mammalian sexual development. Cell 7: 315–321.PubMedCrossRefGoogle Scholar
  16. Ohno, S. 1977. The original function of MHC antigens as the general plasma membrane anchorage sites of organogenesis-directing proteins. Immunol. Rev. 33: 59–69.PubMedCrossRefGoogle Scholar
  17. Ohno, S. 1978. Major sex determining genes. Springer-Verlag, Berlin-Heidelberg-New York.Google Scholar
  18. Ohno, S., R. Dofuku and U. Tettenborn. 1971. More about X-linked testicular feminization of the mouse as a noninducible (iS) mutation of a regulatory locus: 5α-androstan-3α–17β-diol as the true inducer of kidney alcohol dehydrogenase and β-glucuronidase. Clin. Genet. 2: 128–140.PubMedCrossRefGoogle Scholar
  19. Ohno, S., L. C. Christian, S. S. Wachtel and G. C. Koo. 1976. Hormone-like role of H-Y antigen in bovine freemartin gonad. Nature 261: 597–598.PubMedCrossRefGoogle Scholar
  20. Ohno, S., Y. Nagai and S. Ciccarese. 1978. Testicular cells lysostripped of H-Y antigen organize ovarian follicle-like appearance. Cytogenet. Cell Genet. 20: 351–364.PubMedCrossRefGoogle Scholar
  21. Ohno, S., S. Ciccarese, Y. Nagai and S. S. Wachtel. 1978. H-Y antigen in testes of XX (BALB)/XY (C3H) chimaeric male mouse. Arch. Androl. 1: 103–109.PubMedCrossRefGoogle Scholar
  22. Polani, P. E. 1970. Hormonal and clinical aspects of hermaphroditism and the testicular feminization syndrome in man. Phil. Trans. Roy. Soc. Lond. B 259: 187–204.CrossRefGoogle Scholar
  23. Rayaud, A. 1947. Effet des injections d’hormones sexuelles á la souris gravide, sur le développment des ébauches de la glande mammaire des embryons. I. Action des substances androgénes. Ann. Endocrinol. 8: 248–253.Google Scholar
  24. Reyes, F. I., R. C. Boroditsky, J. S. D. Winter and C. Faiman. 1974. Studies on human sexual development. II. Fetal and maternal serum gonadotropin and sex steroid concentrations. J. Clin. Endocrinol. Metab. 38: 612–617.PubMedCrossRefGoogle Scholar
  25. Roosen-Runge, E. C. 1964. Primordial germ cells and the spermatogonia. In: Congenital Malformation, p. 32, International Medical Congress, New York.Google Scholar
  26. Wachtel, S. S., G. C. Koo, W. R. Breg, H. T. Thaler, G. M. Dillarad, I. M. Rosenthal, H. Dosik, P. S. Gerald, P. Saenger, M. New, E. Lieber and O. J. Miller. 1976. Serological detection of a Y-linked gene in XX males and XX true hermaphrodites. New England J. Med. 295: 750–754.CrossRefGoogle Scholar
  27. Wachtel, S. S., G. C. Koo, S. Ohno, A. Gropp, V. G. Del, R. Tan-travahi, D. A. Miller and O. J. Miller. 1976. H-Y antigen and the origin of XY female wood lemmings (Myopus schisticolor). Nature 264: 638–639.PubMedCrossRefGoogle Scholar
  28. Whiting, P. W. 1932. Reproductive reactions of sex mosaics of a parasitic wasp, Habrobracon inglandis. J. Comp. Psychol. 14: 345–346.CrossRefGoogle Scholar
  29. Whitten, W. K. 1975. Chromosomal basis for hermaphroditism in mice. In The Developmental Biology of Reproduction, 33rd Symp. of the Society for Developmental Biology. Academic Press, New York.Google Scholar
  30. Zenzes, M. T., U. Wolf, E. Günther and W. Engel. 1978. Studies on the function of H-Y antigen: Dissociation and reorganization experiments on rat gonadal tissue. Cytogenet. Cell Genet. 20: 365–372.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1978

Authors and Affiliations

  • Susumu Ohno
    • 1
  1. 1.Department of BiologyCity of Hope National Medical CenterDuarteUSA

Personalised recommendations