Advertisement

The Predicate Calculus-Language KS as a Query Language

  • Werner Dilger
  • Gisela Zifonun

Abstract

An extended first order predicate calculus language ‘KS’ is defined as the internal representation language for the deductive question-answering system PLIDIS. It serves the functions of a semantic representation language for German, of a knowledge representation language, and of a data base query language. KS incorporates the following extensions: equality, recursively constructed argument terms, ‘list terms’ for representing sets of individuals, and many-sorted domains of individuals. The PLIDIS data base contains ground atomic formulas and axioms. The evaluation of KS-queries proceeds in two steps: first, queries are normalized, i.e., made quantifier-free by means of term-embedding; next, an evaluation graph for the normalised query is constructed. The evaluation of the graph is described.

Keywords

Natural Language Noun Phrase Atomic Formula Predicate Symbol Closed World Assumption 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Berry-Rogghe, G. and Wulz, H. [1978] An Overview of PLIDIS, A Problem Solving System with German as Query Language, In Natural Language Comnunication with Computers (L. Bole, Ed.), Springer, Heidelberg, 1978, forthcoming.Google Scholar
  2. 2.
    Boyce, R. F., Chamberlin, D. D., King III, W. F, and Hammer, M. M. [1975] Specifying Queries as Relational Expressions: The SQUARE Data Sublanguage, CACM 11, 18 (Nov. 1975), 621–628.Google Scholar
  3. 3.
    Chang, C.L. [1978] DEDUCE 2: Further Investigations of Deduction in Relational Data Bases, In Logic and Data Bases (H. Gallaire and J. Minker, Eds.), Plenum Press, New York, 1978, 201–236.Google Scholar
  4. 4.
    Codd, E. F. [1970] A Relational Model for Large Shared Data Banks, CACM 13, 6 (June 1970), 377–387.MATHGoogle Scholar
  5. 5.
    Codd, E. F. [1972] Relational Completeness of Data Base Sublanguages, In Data Base Systems (R. Rustin, Ed.), Prentice-Hall, Englewood Cliffs, N.J., 1972, 65–98.Google Scholar
  6. 6.
    Hayes, P. J. [1971] A Logic of Actions, In Machine Intelligence 6 (B. Meltzer and D. Michie, Eds.), Edinburgh University Press, Edinburgh, 1971, 495–520.Google Scholar
  7. 7.
    Kellogg, C., Klahr, P. and Travis, L. [1978] Deductive Planning and Pathfinding for Relational Data Bases, In Logic and Data Bases (H. Gallaire and J. Minker, Eds.), Plenum Press, New York, 1978, 179–200.Google Scholar
  8. 8.
    Kleene, S. C. [1967] Mathematical Logic, Wiley & Sons, New York, 1967, (see pp. 125–134).MATHGoogle Scholar
  9. 9.
    Lacroix, M. and Pirotte, A. [1977] Domain-Oriented Relational Languages, Proceedings International Conference on Very Large Data Bases, Tokyo, IEEE, 1977, 370–378. Also MBLE Report R-351, April, 1977.Google Scholar
  10. 10.
    Landsbergen, S. and Scha, R. [1978] Formal Languages for Semantic Representation, In Aspects of Automated Text Processing (J. Petöfi, Ed.)3 Buske, Hamburg, 19783 forthcoming.Google Scholar
  11. 11.
    McCarthy, J. and Hayes, P. [1969] Some Philosophical Problems from the Standpoint of Artificial Intelligence, In Machine Intelligence 4 (B. Meltzer and D. Michie, Eds.), Edinburgh University Press, Edinburgh, 1969, 463–502.Google Scholar
  12. 12.
    McSkimin, J. R. and Minker, J. [1978] A Predicate Calculus Based Semantic Network for Question-Answering Systems, In Associative Networks — The Representation and Use of Knowledge (N. Findler, Ed.), Academic Press, New York, 1978.Google Scholar
  13. 13.
    Minker, J. [1978] An Experimental Relational Data Base System Based on Logic, In Logic and Data Bases (H. Gallaire and J. Minker, Eds.), Plenum Press, New York, 1978, 107–147.Google Scholar
  14. 14.
    Pople, H. R. [1972] A Goal-Oriented Language for the Computer, In Representation and Meaning (H. A. Simon and L. Siklossy, Eds.), Prentice-Hall, Englewood Cliffs, N.J., 1972, 329–413.Google Scholar
  15. 15.
    Quine, W. [1972] Methods of Logic, 3rd Edition, Holt, Rinhart and Winston, New York, 1972, (see pp. 232–234).Google Scholar
  16. 16.
    Reiter, R. [1977] An Approach to Deductive Question-Answering, BBN Tech. Report 3649, Bolt Beranek and Newman, Inc., Cambridge, Mass., Sept. 1977, 161 pp.Google Scholar
  17. 17.
    Reiter, R. [1978] On Closed World Data Bases, In Logic and Data Bases (H. Gallaire and J. Minker, Eds.), Plenum Press, New York, 1978, 55–76.Google Scholar
  18. 18.
    Sandewall, E. [1971] Representing Natural Language Information in Predicate Calculus, In Machine Intelligence 6 (B. Meltzer and D. Michie, Eds.), Edinburgh University Press, Edinburgh, 1971, 255–277.Google Scholar
  19. 19.
    Thomason, R. H. [1972] A Semantic Theory of Sortal Incorrectness, Journal of Philosophical Logic 1, 1972, 209–258.MathSciNetMATHCrossRefGoogle Scholar
  20. 20.
    Woods, W. A., Kaplan, R. M. and Nash-Webber, B. L. [1972] The Lunar Sciences Natural Language Information System, Final Report, BBN Report No. 2378, Cambridge, Mass., June 1972.Google Scholar
  21. 21.
    Zifonun, G. [1977] Die Konstruktsprache KS. Entwurf eines Darstellungsmittels für natürlichsprachlich formulierte Information, In kasustheorie, Klassifikation, semantische interpretation, Papiere zur Textlinguistik 11, Buske, Hamburg, 1977, 305–322.Google Scholar

Copyright information

© Plenum Press, New York 1978

Authors and Affiliations

  • Werner Dilger
    • 1
  • Gisela Zifonun
    • 1
  1. 1.Institut fuer deutsche SpracheMannheimGermany

Personalised recommendations