Thermal Gradient Deposition of SiC Diffusion Tracers

  • R. F. Davis
  • J. D. Hong
  • M. Hon
Part of the Materials Science Research book series (MSR, volume 11)


The periodic desire for high temperature and/or corrosion resistant semiconductor devices has invariably caused considerable attention to be focused on α- and β-SiC. However, the favorable properties of refractoriness and chemical inertness also introduce difficulties in fabrication. As such, numerous techniques including sublimation, chemical vapor deposition, sputtering and the several forms of liquid phase epitaxy (LPE) have been used in an attempt to form defect-free crystals and devices (see selected papers in ref. 1–3).


Liquid Phase Epitaxy Seed Crystal Covalent Compound Thermal Neutron Activation Analysis Solvent Zone 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Silicon Carbide, A High Temperature Semiconductor, ed. by J. R. O’Conner and J. Smiltens, Pergamon Press, New York, 1960.Google Scholar
  2. 2.
    Silicon Carbide, 1968, ed. by H. K. Henisch and R. Roy as a special issue of the Mat. Res. Bul., 4(1969).Google Scholar
  3. 3.
    Silicon Carbide, 1973, ed. by R. C. Marshall, J. W. Faust, Jr. and C. E. Ryan, U. South Carolina Press, Columbia, 1974.Google Scholar
  4. 4.
    K. Gillessen and W. van Muench, J. Cryst. Growth, 19, 263 (1973).CrossRefGoogle Scholar
  5. 5.
    W. E. Nelson, et al., AFCRL-66–579 Rept. #3 (1966).Google Scholar
  6. 6.
    S. Prochazka in Special Ceramics 6, ed. by P. Popper, pp. 171- 181, The British Ceramic Research Association, 1975.Google Scholar
  7. 7.
    C. Greshovich and J. H. Rosolowski, J. Am. Cer. Soc., 59, 336 (1976).CrossRefGoogle Scholar
  8. 8.
    W. G. Pfann, Trans. AIME, 203, 961 (1955).Google Scholar
  9. 9.
    W. G. Pfann, Zone Melting, 2nd ed., John Wiley and Sons, Inc., New York, pp. 254–268 (1966).Google Scholar
  10. 10.
    L. B. Griffiths and A. I. Mlavsky, J. Electrochem. Soc., 111, 805 (1964).CrossRefGoogle Scholar
  11. 11.
    M. A. Wright, Ibid., 112, 1114 (1965).Google Scholar
  12. 12.
    W. F. Kippenberg and G. Verspui, Phillips. Res. Rpts., 21, 113 (1966).Google Scholar
  13. 13.
    L. B. Griffiths, J. Phys. Chem. Solids., 27, 257 (1966).CrossRefGoogle Scholar
  14. 14.
    M. Kumagawa, M. Ozeki and S. Yamada, Jap. J. App. Phys., 9 1422 (1970).CrossRefGoogle Scholar
  15. 16.
    W. von Muench and K. Gillessen, in ref. 3, pp. 51–57.Google Scholar
  16. 16.
    V. I. Pavlochenko, et al., Sov. Phys.-Sol. St., 10 2205 (1969)Google Scholar
  17. 17.
    R. J. Perusek, U. S. Patent 3, 669, 763 (1972).Google Scholar
  18. 18.
    J.R.Weiss and R. J. Diefendorf, in ref. 3, pp. 80–91.Google Scholar

Copyright information

© Plenum Press, New York 1978

Authors and Affiliations

  • R. F. Davis
    • 1
  • J. D. Hong
    • 1
  • M. Hon
    • 1
  1. 1.North Carolina State UniversityRaleighUSA

Personalised recommendations