Advertisement

The Structure of Grain Boundaries in Silicon Nitride Based Alloys

  • David R. Clarke
  • G. Thomas
Part of the Materials Science Research book series (MSR, volume 11)

Abstract

Grain boundaries in silicon-based ceramics have been characterized by high resolution electron microscopy including the technique of lattice fringe imaging, and this work is illustrated with examples from both hot-pressed silicon nitrides (MgO and Y2O3 fluxed) and a magnesium-sialon (Mg1.86 Si1.67 Al2.47 O3.l9 N3.8l) temperature observations of the glassy phase are consistent with it being only a partially wetting phase, indicating that it cannot form a continuous film. The atomic configuration of the grain boundaries in both materials is presented together with lattice fringe observations of segregation at grain boundaries in the magnesium-sialon.

Keywords

Silicon Nitride Lattice Fringe Glassy Phase High Resolution Electron Microscopy Fringe Spacing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. R. Clarke, “Nitrogen Ceramics,” ed. F. Riley, Proc. NATO Advanced Study Institute, Canterbury, UK, 1976, in press.Google Scholar
  2. 2.
    G. Thomas, D. R. Clarke, and O. Van der Biest, in “Ceramic Microstructures ’76,” ed. R. M. Fulrath and J. A. Pask, Proc. 6th International Materials Symp., Berkeley, 1976, Westview Press, Col., 1977.Google Scholar
  3. 3.
    D. R. Clarke, J. Am. Ceram. Soc., Prac. Symp. Electron Microscopy Applied to Ceramic Practice, in press.Google Scholar
  4. 4.
    L. M. Levinson and H. R. Philipp, J. App. Physo 46, 1332, 1975.CrossRefGoogle Scholar
  5. 5.
    A. Stuijts, in ”Ceramic Microstructures ’76,“ ed. R. F. Fulrath and J. A. Pask, Westview Press, Col., 1977.Google Scholar
  6. 6.
    F. F. Lang, J. Am. Ceram. Soc. 57, 84, 1974.CrossRefGoogle Scholar
  7. 7.
    R. Kossowsky, D. G. Miller, and E. S. Diaz, J. Mater. Sci. 10, 983, 1975.CrossRefGoogle Scholar
  8. 8.
    D. R. Clarke and G. Thomas, J. Am. Ceram. Soc., 60, 491, 1977.CrossRefGoogle Scholar
  9. 9.
    D. R. Clarke and G. Thomas, J. Am. Ceram. Soc., in press.Google Scholar
  10. 10.
    K. H. Jack, J. Mater. Sci., 11, 1135, 1976CrossRefGoogle Scholar
  11. 11.
    T. M. Shaw and D. R. Clarke, these proceedings.Google Scholar
  12. 12.
    F. F. Lange, ”Deformation of Ceramic Materials,“ ed. R. C. Bradt, and R. E. Tressler, Plenum Press, pp. 361–381, 1975.CrossRefGoogle Scholar
  13. 13.
    C. S. Smith, Trans. AIME, 175, 15, 1948.Google Scholar
  14. 14.
    W. P. Clancy, Microscope, 22, 279, 1974.Google Scholar
  15. 15.
    D. R. Clarke, J. App. Phys., 49, 1978.Google Scholar
  16. 16.
    L. A. Harris, J. App. Phys., 39, 1428, 1968.CrossRefGoogle Scholar
  17. 17.
    R. Sinclair, R. Gronsky, and G. Thomas, Acta. Met., 24, 789, 1976.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1978

Authors and Affiliations

  • David R. Clarke
    • 1
  • G. Thomas
    • 2
  1. 1.Rockwell International Science CenterThousand OaksUSA
  2. 2.University of CaliforniaBerkeleyUSA

Personalised recommendations