Novel Uses of Gravimetry in the Processing of Crystalline Ceramics

  • Robert L. Holman
Part of the Materials Science Research book series (MSR, volume 11)


The recording microbalance has been utilized in studying a vapor phase reaction that occurs between two incongruently vaporizing ceramics at high temperature. The degree of nonstoichiometry and a model for solid state diffusion are established directly. Applications of the process are illustrated by determining crystal composition, by forming reproducibly tailored optical waveguides, and by reducing significantly the susceptibility to laser damage of LiNbO3 single crystals.


Lithium Niobate Solid State Diffusion Niobium Oxide Optical Damage Crystal Composition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R.L. Holman and R.M. Fulrath, J. Am. Ceram. Soc. 55, 192–5 (1972).CrossRefGoogle Scholar
  2. 2.
    R.L. Holman and R.M. Fulrath, J. Appl. Phys. 44, 5227(1973).CrossRefGoogle Scholar
  3. 3.
    R.L. Holman, Ferroelectrics 10, 185–90 (1976).CrossRefGoogle Scholar
  4. 4.
    J.R. Carruthers, G.E. Peterson, M. Grasso, and P.M. Bridenbaugh, J. Appl. Phys. 42, 1846 (1971).CrossRefGoogle Scholar
  5. 5.
    I.P. Kaminow and J.R. Carruthers, Appl. Phys. Lett. 22, 326 (1973).CrossRefGoogle Scholar
  6. 6.
    V.E. Wood, N.F. Hartman, and C.M. Verber, J. Appl. Phys. 45, 1449 (1974).CrossRefGoogle Scholar
  7. 7.
    R.V. Schmidt and I.P. Kaminow, Appl. Phys. Lett. 25, 458 (1974).CrossRefGoogle Scholar
  8. 8.
    J.M. Hammer and W. Phillips, Appl. Phys. Lett. 24, 545 (1974).Google Scholar
  9. 9.
    R.L. Holman, Ph.D. Thesis, University of California, Berkeley, LBL-880, 1972.Google Scholar
  10. 10.
    F.S. Chen, J. Appl. Phys, 40, 3389 (1969).CrossRefGoogle Scholar
  11. 11.
    R.L. Holman, J. Vac. Sci.Technol. 11, 434 (1974).CrossRefGoogle Scholar
  12. 12.
    R.L. Holman, unpublished.Google Scholar
  13. 13.
    N.N. Greenwood, Ionic Crystals, Lattice Defects and Nonstoichiom- etry, Butterworths, London, 1968.Google Scholar
  14. 14.
    B.A. Scott and G. Burns, J. Am. Ceram. Soc. 55, 225 (1972).CrossRefGoogle Scholar
  15. 15.
    P. Lerner, C. Legras, and J.P. Dumas, J. Cryst. Grovth 3, 231 (1968).CrossRefGoogle Scholar
  16. 16.
    G.E. Peterson and J.R. Carruthers, J. Solid State Chem. 1, 98(1969).CrossRefGoogle Scholar
  17. 17.
    L.O. Svaasand, M. Eriksrud, G. Nakken, and A.P. Grande, J. Cryst. Growth 22, 230 (1974).CrossRefGoogle Scholar
  18. 18.
    J. Crank, The Mathematics of Diffusion, Oxford Univ. Press, 1970.Google Scholar
  19. 19.
    F.M. Smits and R.C. Miller, Phys. Rev. 104, 1242 (1956).CrossRefGoogle Scholar
  20. 19.
    H.S. Carslaw and J.C. Jaeger, Conduction of Heat in Solids, Oxford Univ. Press, 1947.Google Scholar
  21. 20.
    A.M. Glass, G.E. Peterson, and T.J. Negran, Nat. Bur. Stand. Spec. Publ. 372, 15 (1972).Google Scholar
  22. 21.
    L.B. Schein, P.J. Cressman, and F.M. Teshi, J. Appl. Phys. 48, 4844 (1977).CrossRefGoogle Scholar
  23. 22.
    G.E. Peterson, A.M. Glass, and T.J. Negran, Appl. Phys. Lett. 19, 130 (1971).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1978

Authors and Affiliations

  • Robert L. Holman
    • 1
  1. 1.Webster Research CenterXerox CorporationRochesterUSA

Personalised recommendations