Strain and Surface Energy Effects in Ceramic Processes

  • E. Dow Whitney
Part of the Materials Science Research book series (MSR, volume 11)


Strain and surface energy effects often play important roles in determining both the kinetic nature of phase transformations and in the appearance of metastable high temperature phases. Familiar examples are to be found in the effect of these parameters on the kinetics of the monoclinic-tetragonal transformation in zirconia, the occurrence of high temperature tetragonal ZrO2 as a metastable state at low temperatures, and in the appearance of high cristobalite in samples of opal at room temperature. High surface area powders possessing “excess” surface energy (relative to a large single crystal) are called “active” and exhibit sometimes unusual properties.


Tetragonal Phase Large Single Crystal Chemical Free Energy Store Strain Energy Surface Energy Effect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T. Mitsuhasi, M. Ichihara and U. Tatsuke, “Characterization and Stabilization of Metastable Tetragonal ZrO2”, J. Amer. Ceram. Sci. 57 [2] 97–101 (1974).CrossRefGoogle Scholar
  2. 2.
    M. J. Buerger, “Crystallographic Aspects of Phase Transformations”, in Phase Transformations in Solids (R. Smoluchowski, J. E. Mayer and W. A. Weyl, Eds.), John Wiley and Sons, Inc., New York, N. Y. (1951) pp. 183–211.Google Scholar
  3. 3.
    D. K. Thomas and T. W. Baker, “An X-ray Study of the Factors Causing Variation in the Heats of Solution of Magnesium Oxide”, Proc. Phys. Soc. (London) 92 [12] 673–79 (1959).CrossRefGoogle Scholar
  4. 4.
    B. Arghiropoulos, J. Elston, P. Hilaire, F. Juillet and S. J. Teichner, “Reactivite des Alumines Noires Non Stoechiometri- ques”, in Reactivity of Solids (S. H. DeBoer, et al., eds.), Elsevier Publishing Co., New York, N. Y. (1961) pp. 525–39.Google Scholar
  5. 5.
    E. C. Subbarao, H. S. Maiti and K. K. Srivastava, “Martensitic Transformation in Zirconia”, Phys. Stat. Sol. (A) 21 9–40 (1974).CrossRefGoogle Scholar
  6. 6.
    G. L. Clark and D. H. Reynolds, “Chemistry of Zirconium Dioxide X-ray Studies”, Ind. Eng. Chem. 29 [6] 711–15 (1937).CrossRefGoogle Scholar
  7. 7.
    R. Cypres, R. Wollast and J. Raucq, “Polymorphic Conversion of Pure irconia”, Ber. Deut. Keram. Ges. 40 [9] 527–32 (1963).Google Scholar
  8. 8.
    A. Clearfield, “Crystalline Hydrous Zirconia”, Inorg. Chem. 3 [1] 146–48 (1964).CrossRefGoogle Scholar
  9. 9.
    E. D. Whitney, “Kinetics and Mechanism of Transition of Meta- stable Tetragonal to Monoclinic Zirconia”, Trans. Faraday Soc. 61 [9] 1991–2000 (1965).CrossRefGoogle Scholar
  10. 10.
    A. Krauth and H. Meyer, “Modifications Produced by Quenching and Their Crystal Growth in the Systems Containing Zirconium Dioxide”, Ber. Deut. Keram. Ges. 42 [3] 61–72 (1965).Google Scholar
  11. 11.
    R. C. Garvie, “Occurrence of Metastable Tetragonal Zirconia as a Crystallite Size Effect”, J. Phys. Chem. 69 [4] 1238–43 (1965).CrossRefGoogle Scholar
  12. 12.
    K. S. Mazdiyasni, C. T. Lynch, and J. S. Smith, “Preparation of Ultra-High Purity Submicron Refractory Oxides”, J. Amer. Ceram. Soc. 48 [7] 372–75 (1965).CrossRefGoogle Scholar
  13. 13.
    M. Poleshaev, “Low Temperature Cubic and Tetragonal Forms of Zirconium Dioxide”, Zh. Fiz. Khim. 41 [11] 2958–59 (1967).Google Scholar
  14. 14.
    I. A. El-Shanshoury, V. A. Rudenko and I. A. Ibrahim, “Poly morphic Behavior of Thin Evaporated Films of Zirconium and Hafnium Oxides”, J. Amer. Ceram. Soc. 53 264–68 (1970).CrossRefGoogle Scholar
  15. 15.
    J. E. Bailey, D. Lewis, Z. M. Librant and L. J. Porter, “Phase Transformations in Milled Zirconia”, Trans. J. Brit. Ceram. Soc. 71 [1] 25–30 (1972).Google Scholar
  16. 16.G. M. Wolten, “Direct High-Temperature Single-Crystal Observation of Orientation Relationship in Zirconia Phase Transformation”, Acta Cryst. 17 763–65 (1964). CrossRefGoogle Scholar
  17. 17.
    J. E. Bailey, “The Monoclinic-Tetragonal Transformation and Associated Twinning in Thin Films of Zirconia”, Proc. Royal Los. (London) A279 [6] 395–412 (1964).CrossRefGoogle Scholar
  18. 18.
    G. K. Bansal and A. H. Heuer, “On A Martensitic Phase Transformation in Zirconia (ZrO2) - - I. Metallographic Evidence”, Acta Met. [11] 1281–89 (1972).CrossRefGoogle Scholar
  19. 19.
    E. D. Whitney, “Effect of Pressure on Monoclinic-Tetragonal Transition of Zirconia; Thermodynamics”. J. Am. Ceram. Soc. 45 [12] 612–13 (1962).CrossRefGoogle Scholar
  20. 20.
    G. L. Kulcinski, “High-Pressure Induced Phase Transition in ZrO2”, J. Amer. Ceram. Soc. 51 [10] 582–84 (1968).CrossRefGoogle Scholar
  21. 21.
    J. D. McCullough and K. N. Trueblood, “The Crystal Structure of Baddeleyite (Monoclinic ZrO2.)”, Acta Cryst. 12 [7] 507–11 (1959).CrossRefGoogle Scholar
  22. 22.
    J. P. Coughlin and E. G. King, “High Temperature Heat Contents of Some Zirconium-Containing Substances”, J. Amer. Chem. Soc. 72 [5] 226–65 (1950).Google Scholar
  23. 23.
    D. T. Livey and P. Murray, “Surface Energies of Solid Oxides and Carbides”, J. Amer. Ceram. Soc. 39, [11] 363–72 (1956).CrossRefGoogle Scholar
  24. 24.
    S. T. Buljan, H. A. McKinstry and V. S. Stubican, “Microstrain Measurements in Monoclinic Tetragonal Phase Transition of Zirconia”, in PHase Transitions -- 1973 (H.K. Henisch, R. Roy and L. E. Cross, Eds.), Pergamon Press, New York, N. Y. (1973) pp. 307–15.Google Scholar
  25. 25.
    J. L. Hart and A. C. D. Chaklader, “Superplasticity in Pure ZrO2”, Mat. Res. Bull. 2, 521–26 (1967).CrossRefGoogle Scholar
  26. 26.
    E. A. Faulkner, “Calculation of Stored Energy from Broadening of X-ray Diffraction Lines”, Phil. Mag. 5, 519–21 (1960).CrossRefGoogle Scholar
  27. 27.
    J. E. Lennard-Jones and B. M. Dent, “The Change in Lattice Spacing at a Crystal Boundary”, Proc. Royal Soc. (London) A121, 247–59 (1928).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1978

Authors and Affiliations

  • E. Dow Whitney
    • 1
  1. 1.University of FloridaGainesvilleUSA

Personalised recommendations