Advertisement

Generalized Excitations in Pure Ionic Crystals

  • D. P. Pacheco
  • B. Di Bartolo

Abstract

The basic formalism underlying the theory of generalized excitations in crystals is presented. The starting point is the phenomenon of quantum-mechanical resonance, in which two degenerate levels, upon being coupled, equally share the excitation energy of the system. With this example as a prototype, the basic properties of a generalized excitation in a quantum-mechanical system are discussed. The general theory is applied to three special cases: optical phonons, Frenkel excitons and magnons. The interactions among these different types of excitations are also presented and discussed.

Keywords

Matrix Element Dispersion Relation Excited Atom Wannier Function Frenkel Exciton 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. A. Reissland, The Physics of Phonons, John Wiley and Sons, New York, 1973, p. 260.Google Scholar
  2. 2.
    For a discussion of the Bloch Theorem, see, for example: R. E. Peierls, Quantum Theory of Solids, Oxford University Press, London, 1965, pp. 75–79; or,Google Scholar
  3. 2a.
    C. Kittel, Introduction to Solid State Physics, 3rd Ed., John Wiley and Sons, New York, 1968, pp. 257–259.Google Scholar
  4. 3.
    D. L. Dexter, J. Chem. Phys. 21, 836 (1953).ADSCrossRefGoogle Scholar
  5. 4.
    D. D. Sell, R. L. Greene, and R. M. White, Phys. Rev. 158, 489 (1967).ADSCrossRefGoogle Scholar
  6. 5.
    N. M. Amer, T. Chiang, and Y. R. Shen, Phys. Rev. Letters 34, 1454 (1975).ADSCrossRefGoogle Scholar
  7. 6.
    R. S. Knox and A. Gold, Symmetry in the Solid State, W. A. Benjamin, Inc., New York, Chapters 7 and 14, 1964.MATHGoogle Scholar
  8. 7.
    K. Shinagawa, J. Phys. Soc. Japan 23, 1057 (1967).CrossRefGoogle Scholar
  9. 8.
    T. Kushida, J. Phys. Soc. Japan 34, 1318 (1973).CrossRefGoogle Scholar
  10. 9.
    R. K. Watts, in Optical Properties of Ions in Solids, (B. Di Bartolo,ed.), Plenum Press, New York, 1975.Google Scholar
  11. 10.
    D. L. Dexter and R. S. Knox, Excitons, Interscience Publishers, New York, Chapters 3 and 4 (1965).Google Scholar
  12. 11.
    R. J. Elliott, in Polarons and Excitons, (C. G. Kuper and G. D. Whitfield, eds.), Plenum Press, New York (1963).Google Scholar
  13. 12.
    H. Haken, in Polarons and Excitons, (C. G. Kuper and G. D. Whitfield, eds.) Plenum Press, New York (1963).Google Scholar
  14. 13.
    H. Haken and P. Reineker, in Excitons, Magnons, and Phonons, (A.B. Zahlan,ed.), Cambridge University Press, London, 1968.Google Scholar
  15. 14.
    R. E. Dietz, A. E. Meixner, H. G. Guggenheim, and A. Misetich, J. Luminescence 1,2, 279 (1970).ADSCrossRefGoogle Scholar
  16. 15.
    R. J. Elliott, M. F. Thorpe, G. F. Imbusch, R. Loudon, and J. B. Parkinson, Phys. Rev. Letters 21, 147 (1968).ADSCrossRefGoogle Scholar
  17. 16.
    J. Hegarty, Ph.D. Thesis, University College, Galway, Ireland, 1976 (unpublished).Google Scholar
  18. 17.
    H. C. Wolf, in Solid State Physics, Vol. 9 (F. Seitz and D. Turnbull, eds.), Academic Press, New York, 1959.Google Scholar
  19. 18.
    R. S. Knox, Theory of Excitons, Supplement 5, Solid State Physics, (F. Seitz and D. Turnbull, eds.), Section 10, Academic Press, New York, 1963.Google Scholar
  20. 19.
    B. Di Bartolo and R. C. Powell, Phonons and Resonances in Solids, John Wiley and Sons, New York, Chapter 5, 1976.Google Scholar
  21. 20.
    T. P. McLean, in Progress in Semiconductors, Vol. 5, (A.F. Gibson et al.,eds.), John Wiley and Sons, New York, 1961.Google Scholar
  22. 21.
    M. J. Treadaway and R. C. Powell, J. Chem. Phys. 61, 4003 (1974).ADSCrossRefGoogle Scholar
  23. 22.
    C. Hsu and R. C. Powell, J. Luminescence 10, 273 (1975).ADSCrossRefGoogle Scholar
  24. 23.
    J. Van Kranendonk and J. H. Van Vleck, Rev. Hod. Phys. 30, 1 (1958).ADSMATHGoogle Scholar
  25. 24.
    T. Holstein and H. Primakoff, Phys. Rev. 58, 1098 (1940).ADSMATHCrossRefGoogle Scholar
  26. 25.
    See, for example, V. Jaccarino, in Magnetism, Vol. II. A. (G. T. Rado and H. Suhl, eds.), Academic Press, New York, 1963.Google Scholar
  27. 26.
    C. G. Windsor and R.W. H. Stevenson, Proc. Phys. Soc. 87, 501 (1966).ADSCrossRefGoogle Scholar
  28. 27.
    S. J. Pickart, M. F. Collins, and C. G. Windsor, J. Appl. Phys. 37, 1054 (1966).ADSCrossRefGoogle Scholar
  29. 28.
    D. L. Dexter, Phys. Rev. 126, 1962 (1962).ADSCrossRefGoogle Scholar
  30. 29.
    Y. Tanabe, T. Moriya, and S. Sugano, Phys. Rev. Letters 15, 1023 (1965).ADSCrossRefGoogle Scholar
  31. 30.
    J. W. Halley and I. Silvera, Phys. Rev. Letters 15, 654 (1965);ADSCrossRefGoogle Scholar
  32. 30a.
    J. W. Halley and I. Silvera, Phys. Rev. 149, 415 (1966);ADSCrossRefGoogle Scholar
  33. 30b.
    J. W. Halley and I. Silvera, Phys. Rev. 149, 423 (1966).ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1978

Authors and Affiliations

  • D. P. Pacheco
    • 1
  • B. Di Bartolo
    • 2
  1. 1.Department of PhysicsBoston CollegeChestnut HillUSA
  2. 2.Laboratoire de Spectroscopie et de LuminescenceUniversité Claude BernardLyon IVilleurbanneFrance

Personalised recommendations