Luminescence Spectra of Solids: Filled-Shell Ions

  • B. Jacquier


The interconfiguration transitions of filled-shell ions (d10and ns2) in the gaseous state are reviewed quickly. The determination of Slater-Condon and spin-orbit parameters reveals the dependence on atomic number in each series.

In crystals doped with such ions we examine the optical properties involving states of excited configurations (d9s) or (d9p) and (ns np). Experimental evidence of the orbital derealization is shown by upward and downward shifts of the electronic transitions for d10 and ns2 ions, respectively. Static and dynamic aspects of their fluorescence are reported for various hosts.

As a consequence of the considerable shift of the spectra, the molecular orbital method is seen to give a realistic approach of the electronic structure of the luminescent center. This approach gives a relative magnitude of the parameters:electron repulsion, crystal—field and spin-orbit splittings. Furthermore, the positions of the excited levels are congruent with those assumed for the model describing the dynamic properties of the fluorescence.


Irreducible Representation Oscillator Strength Configuration Interaction Impurity Center Slater Determinant 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. C. Klick and J. H. Schulman, Solid State Phys. 5, 97 (1957).CrossRefGoogle Scholar
  2. 2.
    D. S. McClure, Solid State Phys. 9, 399 (1959).CrossRefGoogle Scholar
  3. 3.
    W. B. Fowler, Physics of Color Centers, Academic Press, New York (1968).Google Scholar
  4. 4.
    W. E. Hagston, J. Phys. C 5, 680 (1972).ADSGoogle Scholar
  5. 4a.
    W. E. Hagston, J. Phys. C 5, 691 (1972).ADSGoogle Scholar
  6. 5.
    C. E. Moore, Nat’l. Bur. Std. (US), Circ. 467, Vols. 2 (1958).Google Scholar
  7. 5a.
    C. E. Moore, Nat’l. Bur. Std. (US), Circ. 467, Vols. 3 (1958).Google Scholar
  8. 6.
    E. U. Condon and G. H. Shortley, The Theory of Atomic Spectra, University Press, Cambridge (1951).Google Scholar
  9. 7.
    J. S. Griffith, The Theory of Transition-Metal Ions, University Press, Cambridge (1961).MATHGoogle Scholar
  10. 8.
    R. F. Fenske, K. G. Caulton, D. O. Radtke and C. C. Sweeney, Inorg. Chem. 5, 951 (1966).CrossRefGoogle Scholar
  11. 9.
    H. Basch and H. B. Gray, Inorg. Chem 6, 639 (1967).CrossRefGoogle Scholar
  12. 10.
    R. M. Canadine and I. H. Hillier, J. Chem. Phys. 50, 2984 (1969).ADSCrossRefGoogle Scholar
  13. 11.
    B. Jacquier and J. W. Richardson, J. Chem. Phys. 63, 2442 (1975).ADSCrossRefGoogle Scholar
  14. 12.
    J. Owen and J. H. M. Thornley, Rept. Progr. Phys. 29, 675 (1966).ADSCrossRefGoogle Scholar
  15. 13.
    S. Sugano, J. Chem. Phys. 36, 122 (1962).ADSCrossRefGoogle Scholar
  16. 14.
    A. Fukuda, Sei. Light (Tokyo) 13, 64 (1964).Google Scholar
  17. 15.
    T. Mabuchi, A. Fukuda and R. Onaka, Sci Light (Tokyo) 15, 79 (1966).Google Scholar
  18. 16.
    S. Radhakrishna and R. S. Srinivasa, Setty Phys. Rev. 14, 969 (1976).ADSCrossRefGoogle Scholar
  19. 17.
    D. Bramanti and M. Mancini, Phys. Rev. B3, 3670 (1971).ADSGoogle Scholar
  20. 18.
    A. E. Hughes and G. P. Pells, Phys. Stat. Sol. (B) 71, 707 (1975).ADSCrossRefGoogle Scholar
  21. 19.
    R. S. Knox, J. Phys. Soc. Japan 18, suppl. II (1963).Google Scholar
  22. 20.
    R. Smoluchowski, Colloque Ampère XV, North Holland, Amsterdam (1969).Google Scholar

Copyright information

© Plenum Press, New York 1978

Authors and Affiliations

  • B. Jacquier
    • 1
  1. 1.Equipe de Recherche n°10 du CNRSUniversité Lyon IVilleurbanneFrance

Personalised recommendations