Advertisement

Spectroscopy and Luminescence of Lanthanides and Actinides

  • R. G. Pappalardo

Abstract

This chapter reviews the physical models and mathematical techniques used in the interpretation of radiative transitions within the shielded fn configurations of actinides and lanthanides in the condensed state. The tensor operator techniques of the spectroscopy of many electron systems can be utilized to interpret the main features of the observed transitions in absorption and emission. A perturbation approach based on a crystal potential exhibiting the site symmetry of the fn ion is used to explain the observed Stark splitting in the radiative transitions. The absorption and emission properties of trivalent lanthanide and actinide ions in solution and in LaCl3 are reviewed and discussed in terms of phenomenological parameters derived from the aforementioned physical models. Common features and distinctive behavior in the spectroscopy of the two f series are emphasized. Recent applications of lanthanide emission in science and technology are briefly reviewed.

Keywords

Crystal Field Tensor Operator Reduce Matrix Element Crystal Field Parameter Crystal Potential 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. C. Martin, L. Hagan, J. Reader and J. Sugar, Journal of Physical and Chemical Reference Data, 3, 771 (1974).CrossRefGoogle Scholar
  2. 2.
    M. A. El’iashevich, Spektri Redkikh Zemiol, Gosizdat, Moscow (1953). Also in English Translation AEC TR-UU03, Office of Technical Information.Google Scholar
  3. 3.
    J. Becquerel and H. K. Onnes, Koninkl. Akad. Wetenschap (Amsterdam) 10, 592 (1908).ADSGoogle Scholar
  4. 4.
    H. du Bois and G. J. Elias, Ann. Physik 4.27, 233 (l908).CrossRefGoogle Scholar
  5. 5.
    M. Inokuti and F. Hirayama, J. Chem. Phys., 43, 1978 (1965).ADSCrossRefGoogle Scholar
  6. 6.
    L. A. Riseberg and M. J. Weber, in Progress in Optics, Vol. 14, (E. Wolf, ed.) North Holland, Amsterdam (1975).Google Scholar
  7. 7.
    C. Hsu and R. C. Powell, J. Luminescence, 10, 273 (1975).ADSCrossRefGoogle Scholar
  8. 8.
    J. Sugar, Phys. Rev. Letters, 14, 731 (1965).ADSCrossRefGoogle Scholar
  9. 9.
    R. Sarup and M. H. Crozier, J. Chem. Phys. 42, 371 (1965).ADSCrossRefGoogle Scholar
  10. 10.
    H. H. Caspers, R. E. Rast and R. A. Buchanan, J. Chem. Phys., 43, 212U (1965).CrossRefGoogle Scholar
  11. 11.
    B. R. Judd, Operator Techniques in Atomic Spectroscopy, McGraw Hill, New York (1963).Google Scholar
  12. 12.
    B. G. Wybourne, Spectroscopic Properties of Rare-Earths, Interscience Publishers (1965).Google Scholar
  13. 13.
    E. U. Condon and G. H. Shortley, The Theory of Atomic Spectra, Cambridge University Press, p. 174 (1967 Reprint).Google Scholar
  14. 14.
    M. Rotenberg, R. Bivins, N. Metropolis, J. K. Wooten, Jr., The 3j and 6j Symbols, MIT Technology Press (1959).Google Scholar
  15. 15.
    G. Racah, Phys. Rev. 62, H38 (1942).ADSGoogle Scholar
  16. 16.
    C. W. Nielson and G. F. Koster, Spectroscopic Coefficients for the p n . d n . and f n Configurations”MIT Press, Cambridge (1963).Google Scholar
  17. 17.
    B. R. Judd, Second Quantization and Atomic Spectroscopy, Johns Hopkins Press (1967).Google Scholar
  18. 18.
    B. R. Judd, H. M. Crosswhite and H. Crosswhite, Phys. Rev. 169, 130 (1968).ADSCrossRefGoogle Scholar
  19. 19.
    H. P. Jensen, A. Linz, R. P. Leavitt, C. A. Morrison, D. E. Wortman, Phys. Rev. 11, 92 (1975).ADSCrossRefGoogle Scholar
  20. 20.
    E. Wigner, “Gruppentheorie und ihre Anwendung auf die Quantenmechanik der Atomspektren,” F. Viewig und Sohn, Braunscweig, Germany (1931).Google Scholar
  21. 21.
    R. G. Pappalardo, J. Chem. Phys., 34, 1380 (1961).ADSCrossRefGoogle Scholar
  22. 22.
    R. A. Satten and J. S. Margolis, J. Chem. Phys., 32, 573 (1960).ADSCrossRefGoogle Scholar
  23. 23.
    B. R. Judd, Phys. Rev., 127, 750 (1962).ADSCrossRefGoogle Scholar
  24. 24.
    G. S. Ofelt, J. Chem. Phys., 37, 511 (1962).ADSCrossRefGoogle Scholar
  25. 25.
    A. D. Liehr and C. J. Ballhausen, Phys. Rev., 106, 1161 (1957).ADSCrossRefGoogle Scholar
  26. 26.
    S. Koide and M. H. L. Pryce, Phil. Mag. 3, 607 (1958).ADSCrossRefGoogle Scholar
  27. 27.
    W. T. Carnall and P. R. Fields, Advances in Chemistry Series, No. 71, 86 (1967).Google Scholar
  28. 28.
    M. J. Weber, Phys. Rev., 171, 283 (1968).ADSCrossRefGoogle Scholar
  29. 29.
    R. G. Pappalardo, J. Luminescence, 14, 159 (1976).ADSCrossRefGoogle Scholar
  30. 30.
    K. Rajnak and B. G. Wybourne, Phys. Rev., 132, 280 (1963).ADSCrossRefGoogle Scholar
  31. 31.
    CK. Jörgensen, “Absorption Spectra and Chemical Bonding in Complexes,” Pergamon Press (1962).Google Scholar
  32. 32.
    C. K. Jörgensen, R. Pappalardo and J. Flahaut, J. Chemie Phys. 444 (1965).Google Scholar
  33. 33.
    O. J. Sovers, M. Ogawa and T. Yoshioka, Proceedings 12th Rare Earth Research Conference, p. 728 (1976).Google Scholar
  34. 34.
    R. G. Pappalardo, W. T. Carnall and P. R. Fields, J. Chem. Phys. 51, 1182 (1969).ADSCrossRefGoogle Scholar
  35. 35.
    C. K. Jörgensen and B. R. Judd, Mol. Phys. 8, 28l (1964).Google Scholar
  36. 36.
    R. Pappalardo, J. Chem. Phys., 49, 1545 (1968).ADSCrossRefGoogle Scholar
  37. 37.
    G. Blasse, A. Bril and W. C. Nieuwport, Proceed. Intern. Conf. on Luminescence, p. l646 (1966).Google Scholar
  38. 38.
    B. Di Bartolo, Optical Interactions in Solids, J. Wiley and Sons, New York, p. 111 (1968).Google Scholar
  39. 39.
    J-L. Prather, Atomic Energy Levels in Crystals, NBS Monograph 19 (1961).Google Scholar
  40. 40.
    K. H. Hellwege, Ann. Phys. 4, 95-l60; (1949).Google Scholar
  41. 40a.
    K. H. Hellwege, Ann. Phys. 4, ; 357–358 (1949).Google Scholar
  42. 41.
    G. Dieke, Spectra and Energy Levels of Rare-Earth Ions in Crystals, (H. M. Crosswhite and H. Crosswhite, eds.), Interscience Publishers (1968).Google Scholar
  43. 42.
    M. T. Hutchings and P. K. Ray, Proc. Phys. Soc., 8l, 663 (1963).ADSCrossRefGoogle Scholar
  44. 43.
    W. T. Carnall, H. Crosswhite, H. M. Crosswhite and J. G. Conway, J. Chem. Phys., 64 , 3582 (1976).ADSCrossRefGoogle Scholar
  45. 44.
    L. A. Riseberg and H. W. Moos, Phys. Rev., 174, 429 (1968).ADSCrossRefGoogle Scholar
  46. 45.
    I. Richman, R. A. Satten, E. Y. Wong, J. Chem. Phys., 39, 1833 (1963).ADSCrossRefGoogle Scholar
  47. 46.
    W. F. Krupke, IEEE J. Quant. Electronics, QE-8, 725 (1972).ADSCrossRefGoogle Scholar
  48. 47.
    B. R. Judd, Phys. Rev. 141, 4 (1966).ADSCrossRefGoogle Scholar
  49. 48.
    L. F. Johnson in Lasers, (A. K. Levine, ed.) M. Dekker, New York, p. 137 (1966).Google Scholar
  50. 49.
    J. F. Waymouth, Electrical Discharge Lamps, MIT Press, Cambridge, Massachusetts (1971).Google Scholar
  51. 50.
    A. K. Levine and F. C. Palilla, Proceedings International Symposium on Luminescence, Munich, p. 317 (1965).Google Scholar
  52. 51.
    A. K. Levine and F. C. Palilla, Electrochemical Technology 4 , 16 (1966).Google Scholar
  53. 52.
    J. L. Sommerdijk and A. Bril, J. Electrochem. Soc. 122, 952 (1975).CrossRefGoogle Scholar
  54. 53.
    M. G. Mayer, Phys. Rev., 60, 184 (1941).ADSMATHCrossRefGoogle Scholar
  55. 54.
    J. Akatsu, Radiochimica Acta, 4, 58 (1965).Google Scholar
  56. 55.
    H. Haïssinsky and C. J. Jörgensen, J. Chem. Phys., 9, 1135 (1966).Google Scholar
  57. 56.
    H. Lämmermann and J. G. Conway, J. Chem. Phys., 38, 259 (1963).ADSCrossRefGoogle Scholar
  58. 57.
    J. B. Gruber, J. Chem. Phys., 35, 2186 (l961).CrossRefGoogle Scholar
  59. 58.
    J. B. Gruber and J. G. Conway, J. Chem. Phys, 36, 191 (1962).ADSCrossRefGoogle Scholar
  60. 59.
    J. G. Conway, J. Chem. Phys., 40, 2504 (1964).ADSCrossRefGoogle Scholar
  61. 60.
    J. G. Gruber, W. R. Cochran, J. G. Conway and A. T. Nicol, J. Chem. Phys., 45, 1423 (1966).ADSCrossRefGoogle Scholar
  62. 61.
    J. G. Conway, J. B. Gruber, E. K. Hulet, R. J. Morrow and R. G. Gutmacher, J. Chem. Phys., 36, 189 (1962).ADSCrossRefGoogle Scholar
  63. 62.
    W. T. Carnall, D. Cohen, P. R. Fields, R. K. Sjoblom and R. F. Barnes, J. Chem. Phys., 59, 1785 (1973).ADSCrossRefGoogle Scholar
  64. 63.
    W. T. Carnall, P. R. Fields and R. G. Pappalardo, J. Chem. Phys., 53, 2922 (1970).ADSCrossRefGoogle Scholar
  65. 64.
    W. T. Carnall, S. Fried and F. Wagner Jr., J. Chem. Phys., 58, 1938 (1973).ADSCrossRefGoogle Scholar
  66. 65.
    R. A. Satten, D. Young and D. M. Gruen, J. Chem. Phys., 33, 1140 (1960).ADSCrossRefGoogle Scholar
  67. 66.
    J. B. Gruber, J. Inorg. Nucl. Chem., 25, 1093 (1963).CrossRefGoogle Scholar
  68. 67.
    W. F. Krupke and J. B. Gruber, J. Chem. Phys., 46, 542 (1967).ADSCrossRefGoogle Scholar
  69. 68.
    J. A. Caird, J. P. Hessler, A. P. Paszek, W. T. Carnall, H. M. Crosswhite, H. Crosswhite, H. Diamonds and C. W. Williams, Amer. Phys. Soc. Meeting (December, 1976).Google Scholar

Copyright information

© Plenum Press, New York 1978

Authors and Affiliations

  • R. G. Pappalardo
    • 1
  1. 1.GTE Laboratories, Inc.WalthamUSA

Personalised recommendations