Topical Problems of Laser Crystal Physics

  • A. A. Kaminskii


This article begins with a brief history of the study of laser crystals. Following this is a treatment of the physical properties of the microparameters CDA (donor-acceptor interaction) and CDD (migration between like ions). Also discussed are the superfast migration in Nd3+ crystals, the boundary concentration (Cb), self-activated (100% concentration) neodymium crystals, the experimental “e”-law, and the two types of quenching constant dependences in neodymium crystals. Stimulated emission in garnets with RE3+ ions, the structural possibilities of garnet crystals, and “mixed garnets” are also presented. The problem of the IR boundary of stimulated emission in activated crystals, the single-frequency phonon model and the effective phonon density in certain activated crystals (Y3A15O12 and YA1O3) are included. In addition, the 3μm stimulated emission of Er3+ (4I11/24I13/2 transition) and Ho3+ (5I65I7) ions at 300 K is covered. Finally, the new laser operating scheme of self-saturating transitions, and lasers with deactivator ions (e.g. Lu3A15O12: Er3+, Tm3+) are also discussed.


Laser Crystal Concentration Quenching Topical Problem Nonradiative Transition Nonradiative Decay 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. A. Kaminskii, Laserniye Kristally, Izd. Nauka, Moscow, 1975.Google Scholar
  2. 2.
    H. G. Danielmeyer and H. P. Weber, IEEE J. Quantum Electronics QE-8, 805 (1972).ADSCrossRefGoogle Scholar
  3. 3.
    H. P. Weber, T. C. Damen, H. G. Danielmeyer and B. C. Totfield, Appl. Phys. Lett. 22, 534 (1973).ADSCrossRefGoogle Scholar
  4. 4.
    M. V. Artamonova, Ch. M. Briskina, A. I. Burstein, L. D. Susman and A. G. Sklesnev, Zh. eksper. theor. Fiz. 62, 863, (1972).Google Scholar
  5. 5.
    A. I. Burstein, Zh. eksper. theor. Fiz. 62, 1695 (1972).Google Scholar
  6. 6.
    V. P. Sakun, Fiz. tverd. Tela 14, 2199 (1972).Google Scholar
  7. 7.
    Yu. K. Voronko, T. G. Mamedov, V. V. Osiko, A. M. Prokhorov, V. P. Sakun and I. A. Sherbakov, Zh. eksper. theor. Fiz 71, 478 (1976).ADSGoogle Scholar
  8. 8.
    K. Otsuka, T. Yamada, M. Sarawatari, and T. Kimura, IEEE J. Quantum Electronics QE-11, 330 (1975).ADSCrossRefGoogle Scholar
  9. 9.
    J. Nakano, K. Otsuka, and T. Yamada, J. Appl. Phys. 47, 2749 (1976).ADSCrossRefGoogle Scholar
  10. 10.
    S. R. Chinn and H. Y-P. Hong, Optics Communications 15, 345 (1975).ADSCrossRefGoogle Scholar
  11. 11.
    H. Y-P. Hong and K. Dwight, Mater. Res. Bull. 9, 1661 (1974).CrossRefGoogle Scholar
  12. 12.
    S. R. Chinn and H. Y-P. Hong, Digest IX Internat. Conf. Quantum Electronics, Amsterdam, 1976, p.87.Google Scholar
  13. 13.
    H. Y-P. Hong and S. R. Chinn, Mater. Res. Bull. 11, 421 (1976).ADSCrossRefGoogle Scholar
  14. 14.
    A. A. Kaminskii, S. E. Sarkisov, J. Bohm, P. Reiche, D. Schultze, and R. Uecker, Phys. Stat. Sol. (a) 43, 71 (1977).ADSCrossRefGoogle Scholar
  15. 15.
    A. A. Kaminskii, G. A. Bogomolova, and A. M. Kevorkov, Izv. Akad. Nauk SSR, Ser. neorgan. Mater, 11, 884 (1975).Google Scholar
  16. 16.
    Kh. S. Bagdasarov, G. A. Bogomolova, M. M. Grizenko, A. A. Kaminskii, A. M. Kevorkov, A. M. Prokhorov, and S. E. Sarkisov, Dokl. Akad. Nauk SSSR 218, 316 (1974).Google Scholar
  17. 17.
    L. G. Morosov and P. P. Feofilov, Izv. Akad. Nauk SSR, Ser. neorgan. Mater 4, 1738 (1968).Google Scholar
  18. 18.
    L. A. Riseberg, R. W. Brown, and W. C. Hilton, Appl. Phys. Lett. 23, 127 (1973).ADSCrossRefGoogle Scholar
  19. 19.
    M. Robinson and D. P. Devor, Appl. Phys. Lett. 10, 167 (1967).ADSCrossRefGoogle Scholar
  20. 20.
    E. V. Zharikov, V. I. Zhekov, L. A. Kulevskii, T. M. Murina, V. V. Osiko, A. M. Prokhorov, A. D. Savelev, V. V. Smirnov, B. P. Starikov, and M. I. Timoschechkin, Kvantovaya Elektron. 1, 1867 (1974).Google Scholar
  21. 21.
    A. A. Kaminskii, T. I. Butaeva, A. M. Kevorkov, V. A. Fedorov, A. G. Petrosyan, and M. M. Grizenko, Izv. Akad. Nauk SSSR, Ser. neorgan. Mater. 12, 1508, (1976).Google Scholar
  22. 22.
    A. A. Kaminskii, T. I. Butaeva, A. O. Ivanov, I. V. Mochlov, A. G. Petrosyan, G. I. Rogov, and B. A. Fedorov, Pis ma Zh. techn. Fiz. 2, 787 (1976).Google Scholar
  23. 23.
    A. A. Kaminskii, A. A. Pavlyuk, P. V. Klevtsov, I. F. Balashov, V. A. Berenberg, S. E. Sarkisov, V. A. Fedorov, M. V. Petrov, and V. V. Lyubchenko, Izv. Akad. Nauk SSSR, Ser. neorgan. Mater. 13, 582 (1977).Google Scholar
  24. 24.
    M. G. Blazha, D. N. Vylegzhanin, A. A. Kaminskii, S. I. Klokishner, and Yu. E. Perlin, Izv. Akad. Nauk SSSR, Ser. Fiz. 40, 1851 (1976).Google Scholar
  25. 25.
    A. M. Prokhorov, A. A. Kaminskii, V. V. Osiko, M. I. Timoshechkin, E. V. Zharikov, T. I. Butaeva, S. E. Sarkisov, A. G. Petrosyan, and V. A. Fedorov, Phys. Stat. Sol. (a) 40, K69 (1977).ADSCrossRefGoogle Scholar
  26. 26.
    Yu. E. Perlin, A. A. Kaminskii, S. I. Klokishner, V. N. Enakii, Kh. S. Bagdasarov, G. A. Bogomolova, and D. N. Vylegzhanin, Phys. Stat. Sol. (a) 40, 643 (1977).ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1978

Authors and Affiliations

  • A. A. Kaminskii
    • 1
  1. 1.The Institute of CrystallographyAcademy of Sciences of the USSRMoscowUSSR

Personalised recommendations