Advertisement

Polaron Theory Applied to Luminescent Point and Associated Impurities

  • R. Evrard
  • F. Williams

Abstract

The effects of interaction of point defects and of donor-acceptor pairs with lattice vibrations in polar solids are reviewed. The Fröhlich polaron formalism is used. The theory is generalized to systems of arbitrarily large associates with arbitrarily large number of bound electronic particles. The case within the adiabatic approximation for which the lattice responds to the stationary distribution of electronic particles is analyzed separately from the polaron case in which the lattice follows the orbital motions of the electronic particles. Some applications to specific materials are considered.

Keywords

Charge Carrier Coulomb Interaction Adiabatic Approximation Ionic Polarization Phonon Replica 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Fröhlich, M. Pelzer, S. Zienau, Phil. Mag. 41, 221 (1950).MATHGoogle Scholar
  2. 2.
    Polarons in Ionic Crystals and Polar Semiconductors, (J. T. Devreese, ed.), North-Holland Publ. Co., Amsterdam (1972).Google Scholar
  3. 3.
    S. I. Pekar and M. F. Deigen, Zh. Ekspel. Theo. Fiz. 18, 481 (1948).Google Scholar
  4. 4.
    R. Evrard, E. Kartheuser and F. Williams, J. of Luminescence 14, 81 (1976).ADSGoogle Scholar
  5. 5.
    J. Devreese, R. Evrard and E. Kartheuser, Solid State Comm. 7, 767 (1969).ADSCrossRefGoogle Scholar
  6. 6.
    M. M. Engineer and N. Tzoar, Phys. Rev. B5, 3029 (1972);ADSGoogle Scholar
  7. 6a.
    M. M. Engineer and N. Tzoar, Phys. Rev. B8, 702 (1973).ADSGoogle Scholar
  8. 7.
    D. Larsen, Phys. Rev. 187, 1147 (1969).ADSCrossRefGoogle Scholar
  9. 7a.
    M. Matsuura, Can. J. Phys., 52, 1 (1974).ADSCrossRefGoogle Scholar
  10. 7b.
    R. Evrard, J. Devreese and E. Kartheuser, Bull. of the Am. Phys. Soc. 22, 459 (1977).Google Scholar
  11. 8.
    B. Stébé and G. Munschy, Phys. Stat. Sol. 60b, 133 (1973).ADSGoogle Scholar
  12. 9.
    E. Kiefer and U. Schröder, J. Luminescence 14, 235 (1976).ADSGoogle Scholar
  13. 10.
    L. Mehrkam and F. Williams, in Optical Properties of Ion in Solids, (B. Di Bartolo, ed.),Plenum Press, New York, p.459 (1974).Google Scholar
  14. 11.
    A. T. Vink, Thesis, Technical University of Eindhoven (1974);Google Scholar
  15. 11a.
    A. T. Vink, J. Luminescence 9, 159 (1974). 523 (1975).ADSCrossRefGoogle Scholar
  16. 12.
    R. A. Street and W. Senske, Phys. Rev. Letters 37, 1292 (1976)ADSCrossRefGoogle Scholar
  17. 12a.
    P. J. Wiesner, R. A. Street and H. D. Wolf, Phys. Rev. Letters 35, 1366 (1975).ADSCrossRefGoogle Scholar
  18. 13.
    A. J. Rosa and B. D. Streetman, J. Luminescence 10, 211 (1975);ADSCrossRefGoogle Scholar
  19. 13a.
    P. K. Chatterjee, A. J. Rosa and B. G. Streetman, J. Luminescence 8, 176 (1973).ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1978

Authors and Affiliations

  • R. Evrard
    • 1
  • F. Williams
    • 2
  1. 1.Institut de PhysiqueUniversité de LiègeLiègeBelgium
  2. 2.Physics DepartmentUniversity of DelawareNewarkUSA

Personalised recommendations