Advertisement

Biochemistry of The Coumarins

  • Stewart A. Brown
Part of the Recent Advances in Phytochemistry book series (RAPT, volume 12)

Abstract

The coumarins are a group of lactones derived from benzopyrone. Since the discovery by Vogel over a century and a half ago of the simplest member of the class, coumarin itself (1), inDipteryx (Coumarouna) odorataWilld (the tonka bean), this compound and a great range of its structural derivatives have been shown to occur in hundreds of plant species, as well as in certain other organisms8 7, 99. Many synthetic derivatives, of course, also exist. Although coumarin is the simplest representative of its class, it is really atypical of the class in that it lacks oxygenation at position 7. Of well over 500 known naturally occurring coumarins, only a dozen or so lack a hydroxyl or ether oxygen at this position8 7, and it is therfore more appropriate to regard 7-hydroxycoumarin (umbelliferone, 2, R = H) as the parent compound from which other coumarins are structurally derived. As will be noted presently, this derivation is also valid from the biosynthetic standpoint.

Keywords

Cinnamic Acid Shikimic Acid Mevalonic Acid Ficus Carica Sweet Clover 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aneja, R., S. K. Mukerjee and T. R. Seshadri, 1958. A study of the origin and modifications of the C5unit in plant products - new synthesis of angelicin and psoralen.Tetrahedron 4: 256.Google Scholar
  2. 2.
    Ashwood-Smith, M. J. and E Grant, 1977. Conversion of psoralen DNA monoadducts inE. colito interstrand DNA cross links by near UV light (320–360 nm): Inability of angelicin to form cross links, in vivo.Earperientia 33:384.Google Scholar
  3. 3.
    Austin, D. J. and S. A. Brown, 1973. Furanocoumarin biosynthesis in Ruta graveolens cell cultures.Phytochemistry 12:1657.Google Scholar
  4. 4.
    Austin, D. J. and M. B. Meyers, 1965. The formation of 7-oxygenated coumarins in hydrangea and lavender.Phytoohemistry 4: 245.Google Scholar
  5. 5.
    Austin, D. J. and M. B. Meyers, 1965. Studies on glucoside intermediates in umbelliferone biosynthesis.Phytoohemistry 4: 255.Google Scholar
  6. 6.
    Barz, W. and H. Grisebach, 1966. Über die Umwandlung von Daidzein in die Isoflavonoide der Luzerne.Z. Naturforsah.2lb: 1113.Google Scholar
  7. 7.
    Bickoff, E. M., A. L. Livingstone and A. N. Booth, 1960. Estrogenic activity of coumestrol and related compounds.Arch. Bioohem. Biophys. 88: 262.Google Scholar
  8. 8.
    Billek, G. and H. Kindl, 1962. Über die Inhaltstoffe der Familie Saxifragaceae.Monatsh. Chem. 93: 85.Google Scholar
  9. 9.
    Birch, A. J., M. Maung and A. Pelter, 1969. Studies in relation to biosynthesis XL. Some aspects of the chemistry of ö-isopentenylphenols and related compounds.Australian J. Chem. 22: 1923.Google Scholar
  10. 10.
    Bordin, F., F. Baccichetti and L. Musajo, 1972. Inhibition of nucleic acids synthesis in Erlich ascite tumor cells by irradiation in vitro in the presence of skin photosensitizing furocoumarins.Experientia 28: 148.PubMedGoogle Scholar
  11. 11.
    Boyland, E. and B. Green, 1962. The interaction of polycyclic hydrocarbons and nucleic acids.Brit. J. Cancer 16: 507.PubMedGoogle Scholar
  12. 12.
    Brown, S. A., 1960. Über die Lactonringbildung des Coumarins. Z.Natureforsoh. l5b: 768.Google Scholar
  13. 13.
    Brown, S. A., 1963. Biosynthesis of the coumarins IV. The formation of coumarin and herniarin in lavender.Phytoohemistry 2: 137.Google Scholar
  14. 14.
    Brown, S. A., 1965. Biosynthesis of the coumarins VI. Further studies on herniarin formation in lavender.Can. J. Bioohem. 43: 199.Google Scholar
  15. 15.
    Brown, S. A., 1966. Biosynthesis of coumarins.InBiosynthesis of aromatic compounds. G. Billek (ed.) p. 15. Pergamon Press, Oxford.Google Scholar
  16. 16.
    Brown, S. A., 1970. Biosynthesis of furanocoumarins in parsnips.Phytoohemistry 9: 2471.Google Scholar
  17. 17.
    Brown, S. A., 1973. The role of dihydropsoralen in furanocoumarin metabolism.Can. J. Bioohem.51: 965.Google Scholar
  18. 18.
    Brown, S. A., M. El-Dakhakhny and W. Steck. Biosynthesis of linear furanocoumarins.Can. J. Bioohem. 48: 863.Google Scholar
  19. 19.
    Brown, S. A. and S. Sampathkumar, 1977. The biosynthesis of isopimpinellin.Can, J.Bioohem. 53: 686.Google Scholar
  20. Brown, S. A. and W. Steck, 1973. 7-Deinethylsuberosin and osthenol as intermediates in furanocoumarin biosynthesis.Phytoohemistry 12: 1315.Google Scholar
  21. 21.
    Brown, S. A. and H. J. Thompson, 1975. O-Methylation reactions of furanocoumarin biosynthesis.Abstracts Phytochemioal Society of North America 15 th Meeting. Tampa Florida August 1975. Google Scholar
  22. 22.
    Brown, S. A., G. H. N. Towers and D. Chen, 1964. Biosynthesis of the coumarins V. Pathways of umbelliferone formation inHydrangea macro-phylla. Phytochemistry 3:469.Google Scholar
  23. 23.
    Brown, S. A., G. H. N. Towers and D. Wright, 1960. Biosynthesis of the coumarins. Tracer studies on coumarin formation inEierochloe odorataandMelilotus officinalis. Can. J. Biochem. Physiol. 38: 143.Google Scholar
  24. 24.
    Buck, H. W., I. A. Magnus and A. D. Porter, 1960. The action spectrum of 8-methoxy-psoralen for erythema in human skin — Preliminary studies with a monochromator.Brit. J. Dermatol. 72: 249.Google Scholar
  25. 25.
    Caporale, G., A. Breccia and G. Rodighiero, 1964. Research on the biogenesis of furocoumarines using3H and14C precursors.Prepn. Bio-Med. Appl. Labeled. Mol. Proc. Symp., p. 103, Venice (1964).Google Scholar
  26. 26.
    Caporale, G., F. Dall Acqua, A. Capozzi and S. Marciani, 1972. Studies on the biosynthesis of furocoumarins in the leaves ofFicus caricaL.Ann. Chim (Rome) 62: 536.Google Scholar
  27. 27.
    Caporale, G., F. Dall’Acqua, A. Capozzi, S. Marciani and R. Crocco, 1971. Studies on the biosynthesis of some furocoumarins present inRuta graveolens. Z. Natur- forsch. 26b: 1256.Google Scholar
  28. 28.
    Caporale, G., F. Dall’Acqua and S. Marciani, 1972. The role of marmesin in the biosynthesis of furocoumarins contained in the leaves ofFicus carica. Z. Natur- forsch. 27b: 871.Google Scholar
  29. 29.
    Caporale, G., F. Dall’Acqua, S. Marciani and A. Capozzi, 1970. Studies on the biosynthesis of psoralen and bergapten in the leaves ofFicus carica. Z. Natur- forsch. 25b: 700.Google Scholar
  30. 30.
    Chandra, P. and A. Wacker, 1966. Photodynamic effects on the template activity of nucleic acids.Z. Natur- forsch. 2lb: 663.Google Scholar
  31. 31.
    Ciegler, A., R. W. Detroy and E. B. Lillehoj, 1971. Patulin, penicillic acid, and other carcinogenic lactones.Miorob. Toxins 6: 409.Google Scholar
  32. 32.
    Cole, R. S., 1970. Light-induced cross-linking of DNA in the presence of a furocoumarin (psoralen). Studies with phage X,Escherichia coliand mouse leukemia cells.Biochim. Biophys, Acta 217: 30.Google Scholar
  33. 33.
    Cole, R. S. and D. Zusman, 1970. Sedimentation properties of phage DNA molecules containing light- induced psoralen cross-links.Biochim. Biophys. Acta 224: 660.PubMedGoogle Scholar
  34. 34.
    Dall’Acqua, F., A Capozzi, S. Marciani and G. Caporale, 1972. Biosynthesis of furocoumarins: further studies onRuta graveolens. Z. Naturforsch 27b: 813.Google Scholar
  35. 35.
    Dall’Acqua, F., G. Innocenti and G. Caporale, 1975. Biosynthesis of 0-alkyl-furocoumarins.Planta Med. 27: 343.PubMedGoogle Scholar
  36. 36.
    Dall’Acqua, F., S. Marciani, L. Ciavatta and G. Rodighiero, 1971. Formation of inter-strand cross- linkings in the photoreactions between furocoumarins and DNA.Z. Naturforsch.26b: 561.Google Scholar
  37. 37.
    Dall’Acqua, F., S. Marciani and G. Rodighiero, 1969. Photoreactivity (3655Ä) of various skin-photosensi- tizing furocoumarins with nucleic acids.Z. Naturforsch.24b: 307.Google Scholar
  38. 38.
    Dall’Acqua, F., S. Marciani and G. Rodighiero, 1969. The action spectrum of xanthotoxin and bergapten for the photoreaction with native DNA.Z. Naturforsch.24b: 667.Google Scholar
  39. 39.
    Dall’Acqua, F., S. Marciani and G. Rodighiero, 1970. Inter-strand cross-linkages occurring in the photo- reaction between psoralen and DNA.FEBS Letters 9: 121.PubMedGoogle Scholar
  40. 40.
    Dall’Acqua, F., S. Marciani, F. Zambon and G. Rodighiero, 1976. Studi cinetici sulla reazione di fotoaddizione (365 nm) tra psoralene e DNA.Chim. Ind. (Milan) 58: 733.Google Scholar
  41. 41.
    Dall’Acqua, F. and G. Rodighiero, 1966. The darkinteraction between furocoumarins and nucleic acids.Atti Accad. Nazi. Lincei Rend. Classe Sei. Fis. Mat. Nat. 40: 411.Google Scholar
  42. 42.
    Dall’Acqua, F. and G. Rodighiero, 1966. Changes in the melting curve of DNA after the photoreaction with skin-photosensitizing furocoumarins.Atti Aooad, Nazi, Linoei Rend. Classe Sei. Fis Mat. Nat. 40: 595.Google Scholar
  43. 43.
    Detroy, R. W., E. B. Lillehoj and A. Ciegler, 1971. Aflatoxin and related compounds.Miovoh. Toxins 6: 3.Google Scholar
  44. 44.
    Dhillon, D. S. and S. A. Brown, 1976. Localization, purification, and characterization of dimethylallyl- pyrophosophate: umbelliferone dimethylallytransferase from Ruta graveolens.Aroh. Bioohem. Biophys.177: 74.Google Scholar
  45. 45.
    Edwards, K. G. and J. R. Stoker, 1967. Biosynthesis of coumarin: the isomerization stage.Fhytochemistry 6: 655.Google Scholar
  46. 46.
    Edwards, K. G. and J. R. Stoker, 1968. Biosynthesis of herniarin: the isomerization stage.Phytochemistry 7: 73.Google Scholar
  47. 47.
    Ellis, B. E. and S. A. Brown, 1974. Isolation of dimethylallylpyrophosphate: umbelliferone dimethylallyltransferase fromRuta graveolens. Can. J. Biochem. 52i734.Google Scholar
  48. 48.
    Floss, H. G., 1972. Biosynthesis of furanocoumarins.InRecent advances in phytochemistry. V. C. Runeckles and J. E. Watkin (eds.). Vol. 4, pp. 143–164. Appleton-Century-Crofts. New York.Google Scholar
  49. 49.
    Floss, H. G. and U. Mothes, 1964. Zur Biosynthese von FuranoCumarinen in Fimpinella magna,Z. Naturforsch.19b: 770.Google Scholar
  50. 50.
    Floss, H. G. and U. Mothes, 1966. On the biosynthesis of furanocoumarins in Fimpinella magna.Fhyto chemistry 5: 161.Google Scholar
  51. 51.
    Floss, H. G. and H. Paikert, 1969. Biosynthesis of furanocoumarins inFimpinella magna(Umbelliferae).Phytochemistry 8: 589.Google Scholar
  52. 52.
    Fowlks, W. L, D. G. Griffith and E. L. Oginsky, 1958. Photosensitization of bacteria by furocoumarins and related compounds.Nature 181: 571.PubMedGoogle Scholar
  53. 53.
    Fritig, B., L. Hirth and G. Ourisson, 1970. Biosynthesis of the coumarins: scopoletin formation in tobacco tissue cultures.Phytochemistry 9: 1963.Google Scholar
  54. 54.
    Games, D. E. and D. H. James, 1972. The biosynthesis of the coumarins of Angelica archangelica.PhytochemistryII: 868.Google Scholar
  55. 55.
    Gautier, J., A. Cave, G. Kunesch and J. Polonsky, 1972. On the biosynthesis of neoflavonoids.Esrperientia 28: 759.Google Scholar
  56. 56.
    Gestetner, B. and E. E. Conn, 1974. The 2-hydroxylation of trans-cinnamic acid by chloroplasts from Melilotus alba Desr.Arch. Bioohem. Biophys.16Z: 617.Google Scholar
  57. 57.
    Giese, A. C., 1971. Photosensitization by natural pigments.Photo-physiology 6: 77.Google Scholar
  58. 58.
    Goplen, B. P., J. E. R. Greenshields and H. Baenziger, 1957. The inheritance of coumarin in sweet clover.Can. J. Botany 35: 583.Google Scholar
  59. 59.
    Grisebach, H. and W. Barz, 1963. Zur Biogenese des Isoflavone VII. Über die Biogenese des Cumostrols in der Luzerne(Mediaago sativaL.)Z. Naturforsah 18b: 466.Google Scholar
  60. 60.
    Grisebach, H. and W. Barz, 1964. Zur Biogenese der Isoflavone VIII. Mitt.: 4,2’,4’-Trihydroxy-chalkon- 4’-glucosid als Vorstufe für Cumöstrol, Formononetin und Daidzein in der Luzerne(Medioago sativaL.) Z.Naturforsah.19b: 569.Google Scholar
  61. 61.
    Grisebach, H. and W. D. Ollis, 1961. Biogenetic relationships between coumarins, flavonoids, isoflavonoids and rotenoids.Experientia 17: 4.PubMedGoogle Scholar
  62. 62.
    Hanson, C. V., C. J. Shen and J. E. Hearst, 1976. Crosslinking of DNA in situ as a probe for chromatin structure.Science 19Z: 62.Google Scholar
  63. 63.
    Harter, M. L., I. C. Felkner, and P. S. Song, 1976. Near-uv-effects of 5,7-dimethoxycoumarin inBacillus subtilis.Photchem. Photobiol. 24: 491.Google Scholar
  64. 64.
    Haskins, F. A. and H. J. Gorz, 1961. A reappraisal of the relationship between free and bound coumarin inMelilotus. Crop Sei. 1: 320.Google Scholar
  65. 65.
    Haskins, F. A. and T. Kosuge, 1965. Genetic control of the metabolism of o-hydroxycinnamic acid precursors inMelilotus alba. Genetics 62: 1059.Google Scholar
  66. 66.
    Haskins, F. A., L. G. Williams and H. J. Gorz, 1964. Light-inducedtranstoeisconversion of 3-D-glucosyl o-hydroxycinnamic acid inMelilotus albaleaves.Plant Physiol. 29:111. Google Scholar
  67. 67.
    Hazelton, L. W., T. W. Tusing, B. R. Zeitlin, R. Thiesen, jun. and H. K. Murer, 1956. Toxicity of coumarin.J. Pharmacol. Exp. Therap. 118: 348.Google Scholar
  68. 68.
    Igali, S., B. A. Bridges, M. J. Ashwood-Smith and B. R. Scott, 1970. Mutagenesis inEscherichia ooliIV. Photosensitization to near ultraviolet light by 8- methoxypsoralen.Mutat. Res.9: 21.PubMedGoogle Scholar
  69. 69.
    Isaacs, S. T., C. J. Shen, J. E. Hearst and H. Rapoport, 1977. Synthesis of new psoralen derivatives with superior photoreactivity with DNA and RNA.Biochemistry 16: 1058.PubMedGoogle Scholar
  70. 70.
    Kindl, H., 1971. Zur Frage derortho-Hydroxylierung aromatoscher Carbonsäuren in höheren Pflanzen.Eoip-pe-SeylersZ.Fhysiol. Chem. 352: 78.Google Scholar
  71. 71.
    Kleinhofs, A., F. A. Haskins and H. J. Gorz, 1967. trans-ö-Hydroxycinnainic acid glucosylation in cell- free extracts ofMelilotus aVba. Fhytochemistry 6: 1313.Google Scholar
  72. 72.
    Kosuge, T. and E. E. Conn, 1959. The metabolism of aromatic compounds in higher plants. I. Coumarin and o-coumaric acid.J. Biol. Chem. 224: 2133.Google Scholar
  73. 73.
    Kosuge, T. and E. E. Conn, 1961. The metabolism of aromatic compounds in higher plants III. The g- glucosides of o-coumaric, coumarinic, and melilotic acids.J. Biol. Chem. 236: 1617.PubMedGoogle Scholar
  74. 74.
    Krauch, C. H., S. Farid, S. Kraft and A. Wacker, 1965. Zum Wirkungsmechanismus photodynamischer Furocumarine.Biophysik 2: 301.PubMedGoogle Scholar
  75. 75.
    Krauch, C. H., D. M. Krämer and A. Wacker, 1967. Zum Wirkungsmechanismus photodynamischer Furocumarine. Photoreaktion von Psoralen-(4-14C) mit DNS, RNS, Homopolynucleotiden und Nucleosiden.Photochem. Photobiol. 6: 341.PubMedGoogle Scholar
  76. 76.
    Kunesch, G., R. Hildesheim and J. Polonsky, 1969. Sur l’origine du groupement isovaleryle de la mammeisine (phenyl-4-coumarine).Compt. Rend. 268: 2143.Google Scholar
  77. 77.
    Kunesch G. and J. Polonsky, 1967. On the biosynthesis of neoflavonoids: calophyllolide (4-phenylcoumarin).Chem. Commun. 317.Google Scholar
  78. 78.
    Kunesch, G. and J. Polonsky, 1969. Biosynthese du calophyllolide (neoflavanoide): sur I’origine biogenetique du groupement tigloyle.Phyto chemistry 8: 1221.Google Scholar
  79. Kuske, H., 1938. Experimentelle Untersuchung zur Photosensibilisierung der Haut durch pflanzliche Wirkstoffe. I. Lichtsensibizierung durch Furocumarine als Ursache verschiedener phytogener Dermatosen.Arch. Derm. Syph. (Berlin) 178: 112.Google Scholar
  80. 80.
    Kutney, J. P., P. J. Salisbury and A. K. Verma, 1973. Biosynthetic studies in the coumarin series III. Studies in tissue cultures ofThamnosma montanaTorr, and Frem. The role of mevalonate.Tetrahedron 29: 2673.Google Scholar
  81. 81.
    Kutney, J. P., A. K. Verma and R. N. Young, 1973. Biosynthetic studies in the coumarin series I. Studies in plants ofThamnosma montanaTorr, and Frm. The role of mervalonate.Tetrahedron 29: 2645.Google Scholar
  82. 82.
    Kutney, J. P., A. K. Verma and R. N. Young, 1973. Biosynthetic studies in the coumarin series II. Studies in plants ofThamnosma montanaTorr, and Frem. The role of acetate and glycine.Tetrahedron 29: 2661.Google Scholar
  83. 83.
    Liquori, A. M., B. DeLerma, F. Ascoli, C. Botre and M. Trasciatti, 1962. Interaction between DNA and polycyclic hydrocarbons. J.Mol. Biol. 5: 521.Google Scholar
  84. 84.
    Marciani, S., F. Dall’Acqua, G. Innocenti and G. Caporale, 1974. Further investigations on biosynthesis of furanocoumarins in Ficus carioa.Atti Ist. Veneto Sci. Lett. Arti. C1. Sei. Mat. Nat. 132: 275.Google Scholar
  85. 85.
    Marciani, S., F. Dall’Acqua, D. Vedaldi and G. Rodighiero, 1976. Receptor sites of DNA for the pho.toreaction of psoralen.Farmaoo (Pavia) Ed. Sei. 31: 140.Google Scholar
  86. 86.
    Mathews, M. M., 1963. Comparative studies of lethal photosensitization ofSaroina luteaby 8-methoxy- psoralen and by toluidine blue.J. Baoteriol. 85: 322.Google Scholar
  87. 87.
    Murray, R. D. H., 1978. Naturally occurring plant coumarins.Progr. Chem. Org. Nat. Prod., in press.Google Scholar
  88. Musajo, L., F. Bordin and R. Bevilacqua, 1967. Photoreactions at 3655 A linking the 3,4-double bond of furocoumarins with pyrimidine bases.Photochem. Photobiol. 6: 927.Google Scholar
  89. 89.
    Musajo, L., F. Bordin, G. Caporale, S. Marciani and G. Rigatti, 1967. Photoreactions at 3655 A between pyrimidine bases and skin-photosensitizing furocoumarins.Photochem. Photobiol. 6:111. Google Scholar
  90. 90.
    Masajo, L. and G. Rodighiero, 1962. The skin-photosensitizing furocoumarins.Expevientia 18: 153.Google Scholar
  91. 91.
    Musajo, L. and G. Rodighiero, 1965. Sul meccanismo d’azione delle furocumarine fotosensibilizzatrici. Atti AooadL Nazi. Linoei Rend,Classe Soi. Fis, Mat, Nat, 38: 591.Google Scholar
  92. 92.
    Musajo, L. and G. Rodighiero, 1972. Mode of photosensitizing action of furocoumarins.Photophysiology 7: 115.PubMedGoogle Scholar
  93. 93.
    Musajo, L, G. Rodighiero and G. Caporale, 1954. L’activite photodynamique des coumarines naturelles.Bull. Soo, Chim. Biol. 36: 1213.Google Scholar
  94. 94.
    Musajo, L., G. Rodighiero, G. Caporale and C. Antonello, 1958. Ulteriori richerche sui rapporti fra costituzione e proprieta’ fotodinamiche nel campo delle furocumarine.Farmaao (Pavia) Ed. Soi, 13: 355.Google Scholar
  95. 95.
    Musajo, L., G. Rodighiero, G. Caporale, F. Dall’Acqua, S. Marciani, F. Bordin, F. Bascichetti and R. Bevilacqua, 1974. Photoreactions between skin-photo- sensitizing furocoumarins and nucleic acids.InSunlight and man. Normal and abnormal photobiologic responses. M. A. Pathak, L. C. Harber, M. Seiji and A. Kukita (eds.) University of Tokyo Press, p. 369.Google Scholar
  96. 96.
    Musajo, L., G. Rodighiero, G. Colombo, V Torlone and F. Dall’Acqua, 1965. Photosensitizing furocoumarins: Interaction with DNA and photoinactivation of DNA containing viruses.Expevientia 21: 22.Google Scholar
  97. 97.
    Musajo, L., G. Rodighiero and F. Dall’Acqua, 1965. Evidence of a photoreaction of the photosensitizing furocoumarins with DNA and with pyrimidine nucleosides and nucleotides.Eojperientia 21: 24.Google Scholar
  98. 98.
    Musajo, L., P. Visentini, F. Bacchinetti and M. A. Razzi, 1967. Photoinactivation of Erlich ascites tumor cells in vitro obtained with skin-photosensitizing furocoumarins.Experientia 23: 335.PubMedGoogle Scholar
  99. 99.
    Nielsen, B. E., 1970. Coumarins of umbelliferous plants.Dansk. Tidsskr. Farm. 44: 111.Google Scholar
  100. 100.
    Oginsky, E. L., G. S. Green, D. G. Griffith and W. L. Fowlks, 1959. Lethal photosensitization of bacteria with 8-methoxy-psoralen to long wave length ultraviolet radiation.J. Baoteriol. 78: 821.Google Scholar
  101. 101.
    Parrish, J. A., T. B. Fitzpatrick, L. Tanenbaum and M. A. Pathak, 1974. Photochemotherapy of psoriasis with oral methoxsalen and longwave ultraviolet light.New Engl. J. Med. 291: 1207.PubMedGoogle Scholar
  102. 102.
    Pathak, M. A., J. H. Fellman and K. D. Kaufman, 1960. The effect of structural alterations on the erythemal activity of furocoumarins.J, Invest, Dermatol, 35: 165.Google Scholar
  103. 103.
    Pathak, M. A. and T. B. Fitzpatrick, 1959. Relationship of molecular configuration to the activity of furocoumarins which increase the cutaneous responses following long wave ultraviolet radiation.J. Invest. Dermatol. 32: 255.PubMedGoogle Scholar
  104. 104.
    Pathak, M. A. and T. B. Fitzpatrick, 1959. Bioassay of natural and synthetic furocoumarins (psoralens).J. Invest. Dermatol. 32: 509.PubMedGoogle Scholar
  105. 105.
    Pathak, M. A. and D. A. Kramer, 1969. Photosensitization of skin in vivo by furocoumarins.Bioohim. Biophys. Acta 195: 197.Google Scholar
  106. 106.
    Pathak, M. A., D. A. Krämer and T. B. Fitzpatrick, 1974. Photobiology and photochemistry of furocoumarins (psoralens)InSunlight and man. Normal and abnormal photobiologic responses. M. A. Pathak, L. C. Harber, M. Seiji and A. Kukita (eds.). University of Tokyo Press, p. 335.Google Scholar
  107. 107.
    Pathak, M. A., L. R. Worden and K. D. Kaufman, 1967. Effect of structural alterations on the photosensitizing potency of furocoumarins (psoralens) and related compounds,J. Invest. Dermatol.48:103. PubMedGoogle Scholar
  108. 108.
    Perone, V. B., 1972. The natural occurrence and uses of the toxic coumarins.Miorob. Toxins 8: 67.Google Scholar
  109. 109.
    Reid, W. W., 1958. Biosynthesis of scopoletin and caffeic acid in Nicotiana tabaoim. Chem. & Ind. (London). 1439.Google Scholar
  110. 110.
    Rodighiero, G., G. Caporale and T. Dolcher, 1961. Osservazioni sulla attivita citologica di alcune furocumarine e sul loro comportamento di fronte all’acido desossiri- bonucleinico.Atti Accad. Nazi. Linoei Rend. Classe Sei. Fis Mat. Nat. 30: 84.Google Scholar
  111. 111.
    Rodighiero, G., P. Chandra and A. Wacker, 1970. Structural specificity for the photoinactivation of nucleic acids by furocoumarins.FEBS Letters 10: 29.PubMedGoogle Scholar
  112. 112.
    Rodighiero, G. and F. Dall’Acqua, 1976. Biochemical and medical aspects of psoralens.Photoahem. Photobiol. 24: 647.Google Scholar
  113. 113.
    Rodighiero, G., L. Musajo, F. Dall’Acqua, S. Marciani, G. Caporale and M. L. Ciavatta, 1969. A comparison between the photoreactivity of some furocoumarins with native DNA and their skin-photosensitizing activity.Experi- entia25:479.Google Scholar
  114. 114.
    Rodighiero, G., L. Musajo, F. Dall’Acqua, S. Marciani, G. Caporale and L. Giavatta, 1970. Mechanism of skinphotosensitization by furocoumarins. Photoreactivity of various furocoumarins with native DNA and with ribosomal RNA.Bioohim. Biophys. Acta 217: 40.Google Scholar
  115. 115.
    Russell, D. W. and E. E. Conn, 1967. The cinnamic acid 4-hydroxylase of pea seedlings.Aroh. Bioohem, Biophys. 122i256.Google Scholar
  116. 116.
    Scheel, L. D., 1972. The biological action of coumarins. Miovoh. Toxins 8: 47.Google Scholar
  117. 117.
    Scheel, L. D., V. B. Perone, R. L. Larkin and R. E. Kupel, 1963. The isolation and characterization of two phototoxic furanocoumarins (psoralens) from diseased celery.Biochemistry 2: 1127.PubMedGoogle Scholar
  118. 118.
    Shen, C. J. and J. E. Hearst, 1976. Psoralen-crosslinked secondary structure map of single-stranded virus DNA.Proa. Batl. Aoad. Sei. USA 73: 2649Google Scholar
  119. 119.
    Soine, T. O., 1964. Naturally occurring coumarins and related physiological activities. J.Pharm. Sei. 53: 231.Google Scholar
  120. 120.
    Stecher, P. G. (ed.), 1968. Novobiocin. The Merck Index, Merck & Co., Inc., Rahway, N. J., p. 751.Google Scholar
  121. 121.
    Steck, W., 1967. Biosynthesis of scopolin in tobacco.Can. J. Bioohem. 48: 889.Google Scholar
  122. Steck, W., 1967. The biosynthetic pathway from caffeicacid to scopolin in tobacco leaves.Can. J. Bioohem. 45: 1995.Google Scholar
  123. 123.
    Steck, W. and S. A. Brown, 1970. Biosynthesis of angular furanocoumarins.Can. J. Bioohem. 48: 872.Google Scholar
  124. 124.
    Steck, W. and S. A. Brown, 1971. Comparison of (+) and (-) marmesin as intermediates in the biosynthesis of linear furanocoumarins.Can. J. Bioohem. 49: 1213.Google Scholar
  125. 125.
    Stevenson, T. M. and W. J. White, 1940. Investigations concerning the coumarin content of sweet clover. I. The breeding of a low-coumarin line of sweet clover -Melilotus alba. Soi. Agr. (Ottawa) 21: 18.Google Scholar
  126. 126.
    Stoker, J. R. and D. M. Bellis, 1962. The biosynthesis of coumarin in Melilotus alha.J. Biol Chem. 237: 2303.PubMedGoogle Scholar
  127. Thompson, H. J., S. K. Sharma and S. A. Brown. Unpublished results.Google Scholar
  128. 128.
    Trosko, J. E. and M. Isoun, 1971. Photosensitizing effect of trisoralen on DNA synthesis in human cells grown in vitro.Intern. J. Radiation Biol. 19: 87.Google Scholar
  129. 129.
    Van Sumere, C. F., J. Cottenie, J. de Greef and J. Kint, 1972. Biochemical studies in relation to the possible germination regulatory role of naturally occurring coumarin and phenolics.InRecent Advances in Phytochemistry (V. C. Runeckles and J. E. Watkin, eds.) Vol. 4, pp. 165–221. Appleton-Century-Crofts, New York.Google Scholar
  130. 130.
    Vaughan, P. F. T. and V. S. Butt, 1969. The hydroxyla- tion of p-coumaric acid by an enzyme from leaves of spinach beet(Beta vulgarisL).Bioohem, J, 113: 109.Google Scholar
  131. 131.
    Weygand, F. and H. Wendt, 1959. Über die Biosynthese des Cumarins, Z.Naturforsah.I4b: 421.Google Scholar
  132. 132.
    Wolf, F. T., 1974. Effects of coumarin upon plant growth and development.J. Tenn. Acad. Sci. 49: 27.Google Scholar
  133. 133.
    Wolff, K., H. Hönigsmann, F. Gschnait and K. Konrad, 1975. Photochemotherapie bei Psoriasis.Deut. Med. Woohsohr.100. 2471.Google Scholar

Copyright information

© Plenum Press, New York 1979

Authors and Affiliations

  • Stewart A. Brown
    • 1
  1. 1.Department of ChemistryTrent UniversityPeterborough, OntarioCanada

Personalised recommendations