Recent Advances in the Chemistry and Biochemistry of Lignin

  • Georg G. Gross
Part of the Recent Advances in Phytochemistry book series (RAPT, volume 12)


One of the most prominent common features of vascular plants is their unique capacity to synthesize lignin. This substance is deposited in the cell walls of lignifying tissues, especially the xylem, thus providing rigidity to the otherwise elastic polysaccharide cell walls. Terrestrial plants can thus develop arborescent forms and, consequently, the acquisition of lignin is regarded as one of the essential factors in the evolution of higher plants. Lignin contributes about 20-30% of the dry weight of the woody of trees. This fact, together with the conspicuous predominance of vascular plants, indicates enormous quantities of lignin are produced; indeed, after cellulose, lignin represents the second most abundant natural product.


Ferulic Acid Cinnamic Acid Lignin Biosynthesis Sinapic Acid Coniferyl Alcohol 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Akazawa, T. and E. E. Conn. 1958. The Ooxidation of reduced pyridine nucleotides. J. Biol. Chem.232: 403–415.PubMedGoogle Scholar
  2. 2.
    Alibert, G. R. Ranjeva and A. M. Boudet. 1977. Organisation subcellulaire des voies de synthese des composes phenolique. Physiol. Veg.15(in press).Google Scholar
  3. 3.
    Amrhein, N. and M. H. Zenk. 1977. Metabolism of phenylpropanoid compounds. Physiol. Veg.15: 251–60.Google Scholar
  4. 4.
    Andersson, A., M. Erickson, H. Fridh and G. E. Miksche. 1973. Zur Struktur des Lignins der Rinde van Laubund Nadelholzern. Holzforschung27: 189–93.CrossRefGoogle Scholar
  5. 5.
    Becker, H. and H. Nimz. 1974. Untersuchungen des Lignins der Mistel (Viscum Album L.) in Abhängigkeit von der jeweiligen Wirtspflanze. Z. Pflanzenphysiol. 72: 52–63.Google Scholar
  6. 6.
    Bergmann, L. 1964. Der Einfluss von Kinetin auf die Lignin-buildung und Differenzierung in Gewebekulturen von Nicotiana tabacum. Planta.62: 221–54.CrossRefGoogle Scholar
  7. 7.
    Bland D.E. A. Logan M. Menshun and S Sternhell. 1968. The lignin of Sphagnum. Phytochemistry7: 1373–77.CrossRefGoogle Scholar
  8. 8.
    Brown, S. A. 1966. Lignins. Ann. Rev. Plant Physiol.17: 223–44.CrossRefGoogle Scholar
  9. 9.
    Cheng, C. K. C. and H. V. Marsh. 1968. Gibberellic acid-promoted lignification and phenylalanine ammonialyase activity in a dwarf pea (Pisum sativum). Plant Physiol.43: 1755–59.PubMedCrossRefGoogle Scholar
  10. 10.
    Cramer, A. B., M. J. Hunter and H. Hibbert. 1939. Studies on lignin and related compounds. XXXV. The ethanolysis of spruce wood. J. Amer. Chem. Soc.61: 509–16.CrossRefGoogle Scholar
  11. 11.
    El-Basyouni, S. Z., A. C. Neish and G. H. N. Towers. 1964. The phenolic acids in wheat. III. In soluble derivatives of phenolic cinnamic acids as natural intermediates in lignin biosynthesis. Phytochemistry3: 6127–39.CrossRefGoogle Scholar
  12. 12.
    El-Basyouni, S. Z. and A. C. Neish. 1966. Occurrence of metabolically-active bound forms of cinnamic acid and its phenolic derivatives in acetone powders of wheat and barley plants in Phytochemistry5: 683–91.CrossRefGoogle Scholar
  13. 13.
    Elstner, E. F. and A. Heupel. 1976. Formation of hydrogen peroxide by isolated cell walls from horseradish (Armoracia lapathifolia Gilib.) Planta.130: 175–80.CrossRefGoogle Scholar
  14. 14.
    Erickson, M., S. Larsson and G. E. Miksche. 1973. Gaschromatographische Analyse von Ligninoxida- tionsprodukten. VII. Ein vergessertes Verfahren zur Charakterisierung von Ligninen durch Methylierung und oxydativen Abbau. Acta Chem. Scan.27: 127–40.CrossRefGoogle Scholar
  15. 15.
    Erickson, M., S. Larsson and G. E. Miksche. 1973. VII. Zur Struktur des Lignins der Fichte. Acta Chem. Scand.27: 903–14.CrossRefGoogle Scholar
  16. 16.
    Erickson, M. and G. E. Miksche. 1974. Charakterisierung der Lignine von Gymnospermen durch oxidativen Abbau. Holzforschung28:135–38.CrossRefGoogle Scholar
  17. 17.
    Erickson, M. and G. E. Miksche. 1974. Charakterisierung der Lignine von Pteridophyten durch oxidativen Abbau. Holzforschung28:157–59.CrossRefGoogle Scholar
  18. 18.
    Erickson, M. and G. E. Miksche. 1974. Two dibenzofurans obtained on oxidative degradation of the moss Polytrichum commune Hedw. Acta Chem. Scan. B.28: 109–13.CrossRefGoogle Scholar
  19. 19.
    Erickson, M. and G. E. Miksche. 1974. On the occurrence of lignin or polyphenols in some mosses and liverworts. Phytochemistry13.: 2295–99.CrossRefGoogle Scholar
  20. 20.
    Erickson, M., G. E. Miksche and I. Somfai. 1973. Charakterisierung der Lignine von Angiospermen durch oxydativen Abbau. I. Dikotylen. Holzforschung27: 113–17.CrossRefGoogle Scholar
  21. 21.
    Erickson, M., G. E. Miksche and I. Somfai. 1973. II. Monokotylen. Holzforschung 27: 147–50.CrossRefGoogle Scholar
  22. 22.
    Faix, O. 1976. Zur ganzheitlichen Betrachtungsweise lignin-analytischer Kenndaten. Das Papier30: V1–10.Google Scholar
  23. 23.
    Faix, O., E. Gyzas, and W. Schweers. 1977. Vergleichende Untersuchungen an Ligninen verschiedener Pteridophyten-Arten. Holzforschung, (in press.)Google Scholar
  24. 24.
    Faix, O and W. Schweers. 1974. Vergleichende Untersuchungen and Polymermodellen des Lignins (DHP’s) verschiedener Zusammensetzungen. 2. Mitt. Darstellung von ligninanalytischen Daten in einem Dreieckskoordinatensystem. Holzforschung28: 45–50.CrossRefGoogle Scholar
  25. 25.
    Faix, O. and W. Schweers. 1974. 3 Mitt. IR-spektroskopische Untersuchungen. Holzforschung28: 50–54.CrossRefGoogle Scholar
  26. 26.
    Faix, O. and W. Schweers. 1974. 4 Mitt. UV-spektroskopische Untersuchungen. Holzforschung28: 94–98.CrossRefGoogle Scholar
  27. 27.
    Faix, O. and W. Schweers. 1974. 6. Mitt. Athanolyse, Nitrobenzol-Oxidation and Hydrogenolyse. Holzforschung28: 179–85.CrossRefGoogle Scholar
  28. 28.
    Freudenberg, K., W. Lautsch and K. Engler. 1940. Die Bildung von Vanillin aus Fichtenlignin. Ber. Deutsch. Chem Ges.73: 167–71.CrossRefGoogle Scholar
  29. 29.
    Freudenberg, K. and A. C. Neish. 1968. Constitution and Biosynthesis of Lignin. Springer, Berlin, Heidelberg, New York.CrossRefGoogle Scholar
  30. 30.
    Freudenberg, K. and G. S. Sidhu. 1961. Zur Kenntnis des Lignins der Buche und der Fichte. Holzforschung25: 33–39.CrossRefGoogle Scholar
  31. 31.
    Glasser, W. G. and H. R. Glasser. 1974. Simulation of reactions with lignin by computer (Simrel). II. A model for softwood lignin. Holzforschung28: 5–11.CrossRefGoogle Scholar
  32. 32.
    Grisebach, H., H. Wengenmayer and D. Wyrambik. 1977. Cinnamoyl-CoA: NADP oxidoreductase and cinnamyl alcohol dehydrogenase. Two enzymes of lignin monomer biosynthesis. 2nd International Symposium on Pyridine Nucleotide-Dependent Dehydrogenases. Konstanz (Germany),: 1–12.Google Scholar
  33. 33.
    Gross, G. G. 1977. Biosynthesis of lignin and related monomers. Ree. Adv. Phytochem.11: 141–84.Google Scholar
  34. 34.
    Gross, G. G. 1977. Cell wall-bound malate dehydrogenase from horseradish. Phytochemistry26: 319–21.CrossRefGoogle Scholar
  35. 35.
    Gross, G. G. and C. Janse. 1977. Formation of NADH and hydrogen peroxide by cell wall-associated enzymes from Forsythia xylem. Z. Pflanzenphysiol. (in press).Google Scholar
  36. 36.
    Gross, G. G., C. Janse and E. F. Elstner. 1977. In volvement of malate, monophenols and the super­oxide radical in hydrogen peroxide formation by isolated cell walls from horseradish. Planta, (in press).Google Scholar
  37. 37.
    Gross, G. G. and W. Kreiten. 1975. Reduction of coenzyme A thioesters of cinnamic acids with an enzyme preparation from lignifying tissue of Forsythia. FEBS Lett.54: 259–62.PubMedCrossRefGoogle Scholar
  38. 38.
    Gross, G. G., R. L Hansell and M. H. Zenk. 1975. Hydroxycinnamate: coenzyme A ligase from lig- nifying tissue of higher plants. Some properties and taxonomic distribution. Biochem. Physiol Pflanzen. 168: 41–51.Google Scholar
  39. 39.
    Gross, G. G., J. Stockigt, R. L. Hansell and H. H. Zenk. 1973. Three novel enzymes in­volved in the reduction of ferulic acid to coniferyl alcohol in higher plants: ferulate: CoA ligase, feruloyl-CoA reductase and coniferyl alcohol oxidoreductase. FEES Lett.31: 283–8CrossRefGoogle Scholar
  40. 40.
    Gross, G. G. and H. H. Zenk. 1974. Isolation and properties of hydroxycinnamate: CoA ligase from lignifying tissue of Forsythia. Eur. J. Biochem.42: 453–59.PubMedCrossRefGoogle Scholar
  41. 41.
    Hahlbrock, K. 1977. Regulatory aspects of phenylpropanoid biosynthesis in cell cultures. In: Plant Tissue Culture and its Bio-Technological Application (W. Barz, E. Reinhard, and H. H. Zenk, eds.) pp. 95–111. Springer, Berlin-Heidelberg-New York.CrossRefGoogle Scholar
  42. 42.
    Hahlbrock, K. and E. Wellmann. 1973. Light-independent induction of enzymes related to phenylpropanoid metabolism in cell suspension cultures from parsley. Biochim. Biophys. Acta304: 702–6.PubMedCrossRefGoogle Scholar
  43. 43.
    Harkin, J. H. 1969 Hethods of attacking the problem of lignin structure. Ree. Adv. Phytochem.2: 35–73.Google Scholar
  44. 44.
    Harkin, J. H. and J. R. Obst. 1973. Lignification in trees: indication of exclusive peroxidase participation. 180: 296–98.Google Scholar
  45. 45.
    45Harris, P. J. and R. D. Hartley. 1976. Detection of bound ferulic acid in cell walls of the Gramineae by ultraviolet fluorescence microscopy. Nature 259: 508–10.CrossRefGoogle Scholar
  46. 46.
    Harris, E. E., J. D’lanni and H. Adkins. 1938. Reaction of hardwood lignin with hydrogen. J. Amer. Chem. Soc.60: 1467–70.CrossRefGoogle Scholar
  47. 47.
    Hartley, R. D. and E. C. Jones. 1976. Diferulic acid as a component of cell walls of Lolium multiflorum. Phytochemistry25: 1157–60.CrossRefGoogle Scholar
  48. 48.
    Higuchi, T. and S. A. Brown. 1963. Studies of lignin biosynthesis sis using isotopic carbon. VIII. The phenylpropanoid system in lignification. Can. J. Biochem. Physiol.41: 621–28.PubMedCrossRefGoogle Scholar
  49. 49.
    Ibrahim, R. K. and H. Grisebach. 1976. Purification and properties of UDP-glucose: eoniferyl alcohol glucosyltransferase from suspension cultures of Paul’s scarlet rose. Arch. Biochem. Biophys. 176: 700–08.PubMedCrossRefGoogle Scholar
  50. 50.
    Joseleau, J. P., G. E. Miksche and S. Yasuda. 1976. Structural variation of Arundo donax lignin in relation to growth. Holzforschung31: 19–20.Google Scholar
  51. 51.
    Kalyanaraman, V. S., S. A. Kumar and S. Mahadevan. 1975. Oxidaseperoxidase enzymes of Datura innoxia. Oxidation of reduced nicotinamide- adenine dinucleotide in the presence of formylphenylacetic acid ethyl ester. Biochem. J. 149: 577–87.PubMedGoogle Scholar
  52. 52.
    Klischies, M., J. Stockigt and M. H. Zenk. 1977. Synthesis of stereospecifically labelled eoniferyl alcohol and stereospecificity of cinnamyl alcohol dehydrogenase. Phytochemisty, (in press).Google Scholar
  53. 53.
    Knobloch, K. H. and K. Hahlbrock. 1975. Isoenzymes of p-coumarate: CoA ligase from cell suspension cultures of Glycine max. Eur. J. Biochem. 53:311–20.CrossRefGoogle Scholar
  54. 54.
    Kuroda, H. and T. Higuchi. 1976. Characterization and biosynthesis of mistletoe lignin. Phytochemistry15: 1511–14.CrossRefGoogle Scholar
  55. 55.
    Lai, Y. Z. and K. V. Sarkanen. 1971. Isolation and structural studies. In: Lignins (K. V. Sarkanen and C. H. Ludwig, eds.). pp. 299–344. Wiley- Interscience, New York.Google Scholar
  56. 56.
    Ludemann, H. D. and H. Nimz. 1973. Carbon-13 nuclearmagnetic resonance spectra of lignins. Biochem. Biophys. Res.Commun.52: 1162–69.PubMedCrossRefGoogle Scholar
  57. 57.
    Ludemann, H. D. and H. Nimz. 1974. C-Kernresonaz-spektren von Ligninen, 1. Chemische Verschiebungen bei monomeren und dimeren Modellsubstanzen. Makromol. Chem.175: 2393–2407.CrossRefGoogle Scholar
  58. 58.
    Ludemann, H. D. and H. Nimz. 1974. 2. Buchen- und Fichten-Bjorkman-Lignin. Makromol. Chem. 175: 2409–22.CrossRefGoogle Scholar
  59. 59.
    Ludwig, C. H. 1971. Magnetic resonance spectra. In: Lignins (K. V. Sarkanen and H. C. Ludwig, eds.). pp. 299–344. Wiley-Interscience, New York.Google Scholar
  60. 60.
    Mader, M. 1976. Die Lokalisation der Peroxidase-Isoenzymgruppe G in der Zellwand von Tabak-216 G.G. GROSS Geweben. Planta131: 11–15.CrossRefGoogle Scholar
  61. 61.
    Mader, M., A. Nessel and M. Bopp. 1977. Uber die physiologische Bedeutung der Peroxidase-Iso enzymgruppen des Tabaks anhand einiger biochemischer Eigenschaften. II. pH-Optima, Michaelis-Konstanten, Maximale Oxidationsraten. Z. Pflanzenphysiol.82: 247–60.Google Scholar
  62. 62.
    Mansell, R. L., G. R. Babbel and M. H. Zenk. 1976. Multiple forms and specificity of conferyl alcohol dehydrogenase from cambial regions of higer plants. Phytochemistry15: 1849–53.CrossRefGoogle Scholar
  63. 63.
    Mansell, R. L., G. G. Gross, J. Stockigt, H. Franke and M. H. Zenk. 1974. Purification and properties of cinnamyl alcohol dehydrogenase from higher plants involved in lignin biosynthesis. Phytochemistry, (in press).Google Scholar
  64. 64.
    Mansell, R. L., J. Stockigt and M. H. Zenk. 1972. Reduction of ferulic acid to coniferyl alcohol in a cell free system from a higher plant. Z. Pflanzenphysiol 68: 286–88.Google Scholar
  65. 65.
    Marcinowski, S. and H. Grisebach. 1977. Turnover of coniferin in pine seedlings. Phytochemistry, (in press).Google Scholar
  66. 66.
    Markwalder, H. K. and H. Neukom. 1976. Diferulic acid as a possible crosslink in hemicelluloses from wheat endosperm. Phytochemistyr175: 836–37.CrossRefGoogle Scholar
  67. 67.
    McClure, J. W. and G. G. Gross. 1975. Diverse photoinduction characteristics of hydroxycinna- coenzyme A ligase and phenylalanine ammonia lyase in dicotyledonous seedlings. Z. Pflanzanphysiol.76: 51–55.Google Scholar
  68. 68.
    Miksche, G. E. and S. Yasuda. 1976. Zur Struktur des Lignins der Buche (Fagus silvatica L.). Liebig’s Ann. Chem.28 : 1323–32.CrossRefGoogle Scholar
  69. 69.
    Miksche, G. E. and S. Yasuda. 1977. On the occurence of lignin in “giant” mosses and some related species. Phytochemistry, (in press).Google Scholar
  70. 70.
    Nakamura, Y., H. Fushiki and T. Higuchi. 1974. Metabolic differences between gynosperms and angiosperms in the formation of syringyl lignin. Phytochemistry13: 1777–84.CrossRefGoogle Scholar
  71. 71.
    Nakamura, Y. and T. Higuchi. 1976. Ester linkage of 2-coumaric acid in bamboo lignin. Holzforschung30: 187–91.CrossRefGoogle Scholar
  72. 72.
    Nessel, A. and M. Mader. 1977. über die physiologische Bedeutung der Peroxidase-Isoenzymgruppendes Tabaks anhand einiger biochemischer Eigen­schaften. I. Trennung, Reinigung, chemische und physikalische Daten. Z. Pflanzenphysiol.82:235–46.Google Scholar
  73. 73.
    Nimz, H. 1974. Beech lignin-Proposal of a constitutional scheme. Angew. Chem. Internat. Edit.13: 313–20.CrossRefGoogle Scholar
  74. 74.
    Nimz, H., I. Mogharab and H. D. Ludemann. 1974.13C-Kernresonanzspektren von Ligninen, 3. Vergleich von Fichten-lignin mit kunstlichem Lignin nach Freudenberg. Makromol. Chem. 175: 2536–75.Google Scholar
  75. 75.
    Nimz, H., H. D. Ludemann and H. Becker. 1974. Kohlenstoff-13–13-Kernresonanzspektren von Ligninen, 4. Die Lignine der europaischen Mistel (Viscum album L.). Z Pflanzenphysiol.73: 226–33.Google Scholar
  76. 76.
    Nimz, H. H. and H. D. Ludemann. 1976. Kohlenstoff- 13-NMR-Spektren von Ligninen, 6. Lignin- und DHP-Acetate. Holzforschung30: 33–40.CrossRefGoogle Scholar
  77. 77.
    Parameswaran, N., O. Faix and W. Schweers. 1975. Zur Charakterisierung des Sklereiden-und Holzlignins von Entando-phragma candollei. Holzforschung19: 1–4.CrossRefGoogle Scholar
  78. 78.
    Payen, A. 1838. Memoire sur la composition dutissu propre des plantes et du ligneux. Compt. Rend.7: 1052–56.Google Scholar
  79. 79.
    Ranjeva, R., G. Alibert and A. M. Boudet. 1977. Metabolisme des composes phenoliques chez le Petunia. V. Utilization de la phenylalanine par des chloroplastes isoles. Plant Sei. Lett, (in press).Google Scholar
  80. 80.
    Ranjeva, R., A. M. Boudet and G. Alibert. 1977. Autoregulation cellulaire du metabolisme des phenylpropanoides. Physiol. Veg. 15: in press.Google Scholar
  81. 81.
    Ranjeva, R., A. M. Boudet and R. Faggion. 1976. Phenolic metabolism in Petunia tissue. IV. Properties of p-coumarate: coenzyme A ligase isoenzymes. Biochimie58:1255–62.PubMedCrossRefGoogle Scholar
  82. 82.
    Rhodes, M. J. C., A. C. R. Hill and L. S. C. Wooltorton. 1976. Activity of enzymes involved in lignin biosynthesis in swede root disks. Phytochemistry15:707–10.CrossRefGoogle Scholar
  83. 83.
    Rhodes, M. J. C. and L. S. C. Wooltorton. 1973. Formation of CoA esters of cinnamic acid derivatives by extracts of Brassica napo-brassica root tissue. Phytochemistry12: 2381–87.CrossRefGoogle Scholar
  84. 84.
    Rhodes, M. J. C. and L. S. C. Wooltorton. 1975. The 2-coumaryl CoA ligase of potato tubers. Phytochemistry14: 2161–64.CrossRefGoogle Scholar
  85. 85.
    Rhodes, M. J. C. and L. S. C. Wooltorton. 1976. The enzymic conversion of hydroxycinnamic acids to p-coumaroylquinic and chlorogenic acids in tomato fruits. Phytochemistry15: 947–51.CrossRefGoogle Scholar
  86. 86.
    Rubery, P. H. and D. E. Fosket. 1969. Changes in phenylalanine ammonia-lyase activity during xylem differentiation in Coleus and soybean. Planta87: 54–62.CrossRefGoogle Scholar
  87. 87.
    Rubery, P. H. and D. H.N. Northcote. 1968. Site of phenylalanine lanine ammonialyase activity and synthesis of lignin during xylem differentiation. Nature219: 1230–34.PubMedCrossRefGoogle Scholar
  88. 88.
    Sarkanen, K. V. and H. L. Hergert. 1971. Classification and distribution. In: Lignins (K. V. Sarkanen and C. H. Ludwig, eds.). pp. 43–94. Wiley Interscience, New York.Google Scholar
  89. 89.
    Schweers, W. and O. Faix. 1973. Vergleichende Untersuchungen an Polymermodellen des Lignins (DHP’s) verschiedener Zusammensetzungen. 1. Mitt. Herstellung von Lignin-Polymer-modellen verschiedener Zusammensetzung aus den Monolignolen p-Coumaral- kohol, Coniferylalkohol und Sinapinalkohol. Holzforschung 27: 208–13.CrossRefGoogle Scholar
  90. 90.
    Seitz, U. and U. Heinzmann. 1977. GA directed regution processes in carrot tissues. Abstracts of the International Conference on Regulation of Developmental Processes in Plants, Halle (Saale), p. 101.Google Scholar
  91. 91.
    Shimada, M., T. Fukuzuka and T. Higuchi. 1971. Esterlinkages of p-coumaric acid in bamboo and grass lignins. Tappi 54: 72–78.Google Scholar
  92. 92.
    Shimada, M., H. Fushiki and T. Higuchi. 1972.O-methyltransferase activity from Japanese black pine Phytochemistry175: 2657–62.CrossRefGoogle Scholar
  93. 93.
    Shimada, M., H. Fushiki and T. Higuchi. 1973. Mechanism of biochemical formation of the methoxyl groups in softwood and hardwood lignins. Mokuzai Gakkaishi19: 13–21.Google Scholar
  94. 94.
    Siegel, S. M. 1969. Evidence for the presence of lignin in moss gametophytes. Amer. J. Bot.56: 175–79.CrossRefGoogle Scholar
  95. 95.
    Srivastava, L. M. 1966. Histochemical studies on lignin Tappi49:173–83.Google Scholar
  96. 96.
    Stafford, H. A. 1974. The metabolism of aromatic compounds. Ann. Rev. Plant Physiol.25: 459–86.CrossRefGoogle Scholar
  97. 97.
    Stafford, H. A. 1974. Possible mutienzyme complexes regulating the formation of C6-C6phenolic compounds and lignins in higher plants. Ree. Adv. Phytochem.8: 53–79.Google Scholar
  98. 98.
    Stafford, H. A. and M. A. Brown. 1976. Oxidative dimerization of ferulic acid by extracts from Sorghum. Phytochemistry15: 465–69.CrossRefGoogle Scholar
  99. 99.
    Stewart, C. M. 1957. Status of cambial chemistry. Tappi.40: 244–56.Google Scholar
  100. 100.
    Tanaka, K., F. Nakatsubo and T. Higuchi. 1976. Reac tions of guaiacylglycerolguaiacyl ether with several sugars. I. Reaction of quinonemethide with D-glucuronic acid. Mokuzai Gakkaishi22: 589–90.Google Scholar
  101. 101.
    Tütschek, R. 1975. Isolierung und Charakterisierung der 2-Hydroxy- -(carboxymethyl)-zimtsaure (Sphagnumsaure) aus der Zellwand von Sphagnum magellanicum Brid. Z. Pflanzenphysiol.76: 353–65.Google Scholar
  102. 102.
    Tutschek, R., B. Engmann and H. H. Nimz. 1977. Kohlenstoff- 13-NMR-Spektren von Ligninen. 7. Zur Frage des Ligningehalts von Moosen (Sphagnum magellanicum Brid.). Holzforschung, (in press).Google Scholar
  103. 103.
    Vieitez, A. M., A. Ballester and E. Vieitez. 1975. Coniferyl alcohol from callus of Castanea sativa cultured vitro. Experientia31: 1163.CrossRefGoogle Scholar
  104. 104.
    Wardrop, A. B. 1957. The phase of lignification in the differentiation of wood fibers. Tappi40: 225–43.Google Scholar
  105. 105.
    Wardrop A. B. 1971. Occurrence and formation in plants. In: Lignins (K. V. Sarkanen and C. H. Ludwig, eds.). pp. 19–41. Wiley-Interscience, New York.Google Scholar
  106. 106.
    Wengenmayer, H., J. Ebel and H. Grisebach. 1976. Enzymic synthesis of lignin precursors. Purification and properties of a cinnamoyl-CoA: NADPH reductase from cell suspension cultures of soybean (Glycine max). Eur. J. Biochem.65: 529–36.PubMedCrossRefGoogle Scholar
  107. 107.
    Whitmore, F. W. 1976. Binding of ferulic acid to cell walls by peroxidases of Pinus elliottii. Phytochemistry15: 375–78.CrossRefGoogle Scholar
  108. 108.
    Wyrambik, D. and H. Grisebach. 1975. Purification and properties of isoenzymes of cinnamyl-alcohol dehydrogenase from soybean-cell-suspension cultures. Eur. J. Biochem.59:9–15.PubMedCrossRefGoogle Scholar
  109. 109.
    Yamada, Y. and T. Kuboi. 1976. Significance of caffeic acid 0-methyltransferase in lignification of cultured tobacco cells. Phytochemistry15: 395–96.CrossRefGoogle Scholar
  110. 110.
    Yamasaki, T., K. Hata and T. Higuchi. 1976. Dehydrogenation polymer of sinapyl alcohol by peroxidase and hydrogen peroxide. Mokuzai Gakkaishi22: 582–88Google Scholar

Copyright information

© Plenum Press, New York 1979

Authors and Affiliations

  • Georg G. Gross
    • 1
  1. 1.Lehrstuhl für PflanzenphysiologieRuhr-Universität BochumBochumWest Germany

Personalised recommendations