An Introduction to the Enzymology of Phenylpropanoid Biosynthesis

  • Kenneth R. Hanson
  • Evelyn A. Havir
Part of the Recent Advances in Phytochemistry book series (RAPT, volume 12)


It is the first purpose of this review to provide an outline of phenylpropanoid biosynthesis that can serve as an introduction to the work described in the next few chapters. The enzymology of three early steps in the metabolic pathway will be considred in some detail. These short reviews both point to recent findings and exemplify the progress, difficulties, and goals of the field. One purpose for studying the enzymology of such steps in detail is to make it possible for the plant physiologist to investigate the living plant in a rational and productive way. An enormous amount of painstaking and excellent work has already been carried out on the effects of light, hormones, temperature, infection, and development on various aspects of phenylpropanoid metabolism.11 8 99 100No attempt will be made to review this material, which falls within the scope of a later chapter, but questions of relevance to physiological studies will be discussed where they are suggested by the enzymology.


Chlorogenic Acid Cinnamic Acid Core Sequence Prosthetic Group Mushroom Tyrosinase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abeles, R.H., A.L. Maycock. 1976. Suicide enzyme in-activators.Chem. Res.9: 313–319.CrossRefGoogle Scholar
  2. 2.
    Amrhein, N., K.H. Gödeke. 1977. α-Aminooxy-β-phenyl-propionic acid. A potent inhibitor of L-phenyl- alanine ammonia-lyasein vitroandin vivo. Plant Science Letters 8:313–317.CrossRefGoogle Scholar
  3. 2a.
    Ander, P., K-E Eriksson. 1976. The importance of phenol oxidase activity in lignin degradation by the white- rot fungusSporotrichum pulverulentum. Arch. Microbiol. 109:1–8.CrossRefGoogle Scholar
  4. 2b.
    Andreasson, L.E., R. Bränden, B. Reinhammar. 1976. Kinetic studies ofRhus verniciferalaccase. Evidence for multi-electron transfer and an oxygen intermediate in the reoxidation reaction.Biochim. Biophys. Acta. 438: 370–379.PubMedCrossRefGoogle Scholar
  5. 3.
    Balasingam, K., W. Ferdinand. 1970. The purification and properties of a ribonucleoenzyme, o-diphenol oxidase, from potatoes.Biochem. J.118:15–23.PubMedGoogle Scholar
  6. 4.
    Bartl, K., C. Cavalar, T. Krebs, E. Ripp, J. Retey, W.E. Hull, H. Günther, H. Simon. 1977. Synthesis of stereospecifically deuterated phenylalanines and determination of their configuration.Eur. J. Biochem. 72:247–250.PubMedCrossRefGoogle Scholar
  7. 5.
    Benesch, R.E., R. Benesch. 1974. The mechanism of interaction of red cell organic phosphates with hemoglobin.Adv. Protein Chem. 28:211–237.PubMedCrossRefGoogle Scholar
  8. 6.
    Brand, L.M., A.E. Harper. 1976. Histidine ammonialyase from rat liver. Purification, properties, and inhibition by substrate analogues.Biochemistry 15:1814–1821.PubMedCrossRefGoogle Scholar
  9. 7.
    Bliche, T., H. Sandermann, Jr. 1973. Lipid dependence of plant microsomal cinnamic acid 4-hydroxylase.Arch, of Biochem. and Biophys.158:445–447.CrossRefGoogle Scholar
  10. 8.
    Gamm, E.L., G.H.N. Towers. 1973. Phenylalanine ammonialyase.Phytochemistry 12:961–973.CrossRefGoogle Scholar
  11. 9.
    Chasin, L.A. and B. Magasanik. 1968. Induction and repression of the histidine-degrading enzymes ofBacillus subtilis. J. Biol. Chem. 243:5165–5178.Google Scholar
  12. 10.
    Creasy, L.L. 1976. Phenylalanine ammonia-lyase inactivating system in sunflower leaves.Phytochemistry 15:673–675.CrossRefGoogle Scholar
  13. 11.
    Creasy, L.L., M. Zucker. 1974. Phenylalanine ammonialyase and phenolic metabolism. Recent Advan,Phytochem, 8:1–19.Google Scholar
  14. 12.
    Beinum, J., K. Lerch, B. Reinhammar. 1976. An EPR study ofNeurospora tyrosinase. FEBS Letters 69: 161–164.CrossRefGoogle Scholar
  15. 13.
    Dixon, N.E., C. Gazzola, R.L. Blakeley, B. Zerner. 1976. Metal ions in enzymes using ammonia or amides.Science 191:1144–1150.PubMedCrossRefGoogle Scholar
  16. 14.
    Duckworth, H.W., J.E. Coleman. 1970. Physiochemical and kinetic properties of mushroom tyrosinase. J.Biol. Chem, 245:1613–1625.PubMedGoogle Scholar
  17. 15.
    Estabrook, R.W., A.G. Hildebrandt, J. Baron, K.J. Netter, K. Leibman. 1971. A new spectral intermediate associated with cytochrome P-450 function in liver microsomes.Biochem. Biophys. Res. Commun. 42: 132–139.PubMedCrossRefGoogle Scholar
  18. 16.
    Ebel, J., K. Hahlbrock, H. Grisebach. 1972. Purification and properties of an 0-dihydricphenolmeta-O-methyltransferase from cell suspension cultures of parsley and its relation to flavonoid biosynthesis.Biochim. Biophys. Acta 269:313–326.Google Scholar
  19. 17.
    Ernes, A.V., L.C. Vining. 1970. Partial purification and properties of L-phenylalanine ammonia-lyase fromStreptomyces verticillatus. Can. J. Biochem 48: 613–623.CrossRefGoogle Scholar
  20. 18.
    Freedman, T.B., J.S. Loehr, T.M. Loehr. 1976. A resonance Raman study of the copper protein hemocyanin. New evidence for the structure of the oxygen-binding site. J.Amer. Chem. Soc. 95:2808–2815.Google Scholar
  21. 19.
    Fritz, R.R., D.S. Hodgins, C.W. Abell. 1976. Phenylalanine ammonia-lyase. Induction and purification from yeast and clearance in mammals. J.Biol. Chem. 251:4646–4650.PubMedGoogle Scholar
  22. 20.
    Froehner, S.C., K-E Eriksson. 1974. Purification and properties of Neurospora crassa laccase. J. Bact. 120:458–465.PubMedGoogle Scholar
  23. 21.
    Gestetner, B., E.E. Conn. 1974. The 2-hydroxylation of trans-cinnamic acid by chloroplasts fromMelilotus albaDesr.Arch, Biochem. Biophys, 163:617–624.CrossRefGoogle Scholar
  24. 22.
    Givot, I.L., T.A. Smith, R.H. Abeles. 1969. Studies of the mechanism of action and the structure of the center of histidine ammonia-lyase. J.Biol. Chem. 23: 6341–6353.Google Scholar
  25. 23.
    Grisebach, H., K. Hahlbrock. 1974. Enz3niiology and regulation of flavonoid and lignin biosynthesis in plants and plant cell suspension cultures.Recent Advan. Phytochem, 8:21–52.Google Scholar
  26. 24.
    Gross, G.G. 1977. Biosynthesis of lignin and related monomers.Recent Advan. Phytochem, 11:141–184.Google Scholar
  27. 25.
    Gross, G.G., M.H. Zenk. 1974. Isolation and properties of hydroxycinnamate CoA-ligase from lignifying tissue ofForsythia. Eur. J.Biochem. 42:453–459.Google Scholar
  28. 26.
    Gunsalus, I.C., J.R. Meeks, J.D. Lipscomb, P. Debrunner, E. Münck. 1974. Bacterial monooxygenases. The P-450 cytochrome system.In Ref, 46:559–613.Google Scholar
  29. 27.
    Gunsalus, I.C., T.C. Pederson, S.G. Sligar. 1975. Oxygenase-catalyzed biological hydroxylations.Ann, Rev, Biochem, 44:377–407.CrossRefGoogle Scholar
  30. 28.
    Gutteridge, S., G. Dickson, D. Robb. 1977. Photochemi cal oxidation of tyrosinase.Phytochemistry 16: 517–519.CrossRefGoogle Scholar
  31. 29.
    Hahlbrock, K., H. Grisebach. 1975. Biosynthesis of Flavonoids in “The Flavonoids”,Academic Press, New York. 866–915.Google Scholar
  32. 30.
    Hamilton, G.A. 1974. Chemical models and mechanisms for oxygenases.In Ref. 46:405–451.Google Scholar
  33. 31.
    Hanson, K.R. 1975. Reactions at prochiral centers.J.Biol, Chem, 240:8309–8314.Google Scholar
  34. 32.
    Hanson, K.R., E.A. Havir. 1969. Reduction of the active site of L-phenylalanine ammonia-lyase.Fed, Proc, 28:602. Google Scholar
  35. 33.
    Hanson, K.R., E.A. Havir. 1970. Phenylalanine ammonia-lyase. Evidence that the prosthetic group contains a dehydroalanyl residue and mechanism of action.Arch, Biochem. Biophys, 141:1–17.CrossRefGoogle Scholar
  36. 34.
    Hanson, K.R., E.A. Havir. 1972. Mechanism and properties of phenylalanine ammonia-lyase from higher plants.Recent Advan. Phytochem. 4:46–85.Google Scholar
  37. 35.
    Hanson, K.R., E.A. Havir. 1972. The enzymic elimination of ammonia.The Enzymes 7:75–166.CrossRefGoogle Scholar
  38. 36.
    Hanson, K.R., E.A. Havir. 1977. L-Phenylalanine ammonia-lyase. Explaining the kinetic effects of substrate modification by linear free energy relationships.Arch. Biochem. Biophys. 180:102–113.PubMedCrossRefGoogle Scholar
  39. 37.
    Hanson, K.R., E.A. Havir, and C. Ressler. 1978. Phenylalanine ammonia-lyase. Enz3niiic conversion of 3-(l, 4- cyclohexadienyl)-L-alanine to trans(1,4-cyclohexa- dienyl)acrylic acid.Manuscript in preparation. Google Scholar
  40. 38.
    Hanson, K.R., I.A. Rose. 1975. Interpretations of enzyme reaction stereospecificity.Acc, Chem, Res, 8: 1–10.CrossRefGoogle Scholar
  41. 39.
    Hassall, H., A.K. Soutar. 1974. Amino acid sequence of a peptide containing the active cysteine residue of histidine ammonia-lyase.Biochem. J. 137:559–566.PubMedGoogle Scholar
  42. 40.
    Hasson, E.P., C.A. West. 1976 (a) and (b). Properties of the system for the mixed function oxidation of kaurene and kaurene derivatives in microsomes of the immature seed ofMarah macrocarpus. a) Cofactor requirements, b) Electron transfer components.Plant Physiol. 58: a) 473–478, b) 479–484.Google Scholar
  43. 41.
    Havir, E.A. 1978. Carbohydrate associated with phenylalanine ammonia-lyase. Manuscript in preparation.Google Scholar
  44. 42.
    Havir, E.A., K.R. Hanson. 1968. L-Phenylalanine ammonia-lyase 2. Mechanism and kinetic properties of the enzyme from potato tubers.Biochemistry 7:1904–1914.PubMedCrossRefGoogle Scholar
  45. 43.
    Havir, E.A., K.R. Hanson. 1973. L-Phenylalanine ammonia-lyase (maize and potato). Evidence that the enzyme is composed of four subunits.Biochemistry 12:1583–1591PubMedCrossRefGoogle Scholar
  46. 44.
    Havir, E.A., K.R. Hanson. 1975. L-Phenylalanine ammonia-lyase (maize, potato, andRhodotorula glutinis). Studies of the prosthetic group with nitromethane.Biochemistry 14:1620–1626.PubMedCrossRefGoogle Scholar
  47. 45.
    Havir, E.A., P.D. Reid, H.V. Marsh, Jr. 1971. L-Phenylalanine ammonia-lyase (maize). Evidence for a common catalytic site for L-phenylalanine and L-tyrosine.Plant Physiol. 48:130–136.PubMedCrossRefGoogle Scholar
  48. 46.
    Hayaishi, O. 1974. Molecular mechanisms of oxygen activation. Academic Press, New York, pp 678.Google Scholar
  49. 47.
    Hayaishi, O. 1974. General properties and biological function of oxygenases.In Ref. 46:1–28.Google Scholar
  50. 48.
    Hill, A.C., M.J.C. Rhodes. 1975. The properties of cinnamic acid 4-hydroxylase of aged swede root disks.Photochemistry14:2387–2391.CrossRefGoogle Scholar
  51. 49.
    Hodgins, D.S. 1971. Yeast phenylalanine ammonia-lyase. Purification, properties and the identification of catalytically essential dehydroalanine. J.Biol. Chem. 266:2977–2985.Google Scholar
  52. 50.
    Hodgins, D.S. 1972. Properties of yeast phenylalanine ammonia-lyase.Biochem. Biophys. 149:91–96.CrossRefGoogle Scholar
  53. 50a.
    Hoffmann, P., K. Esser. 1977. The phenol oxidases of the AscomycetePodospora anserina XII. Affinity of laccase II and III to substrates with different substitution patterns.Arch. Microbiol. 112:111–114.PubMedCrossRefGoogle Scholar
  54. 51.
    Holwerda, R.A., H.B. Gray. 1974. Mechanistic studies of the reduction ofRhus verniciferalaccase by hydroquinone. J.Amer. Chem. Soc. 96:6008–6022.CrossRefGoogle Scholar
  55. 52.
    Ichikawa, Y., T. Yamano, H. Fujishima. 1969. Relationship between the interconversion of cytochrome P-450 and P-420 and its activities in bydroxylations and de- methylations by P-450 oxidase systems.Biochim. Biophys. Acta 171:32–46.PubMedCrossRefGoogle Scholar
  56. 53.
    Iredale, S.E., H. Smith. 1974. Properties of phenyl alanine ammonia-lyase extracted fromCucumis sativushypocotyls.Photochemistry 13:575–583.CrossRefGoogle Scholar
  57. 54.
    lyanagi, T., I. Yamazaki. 1969. One electron reduction of quinones by microsomal flavin enzymes.Biochim, Biophys. Acta 172:370–381.CrossRefGoogle Scholar
  58. 55.
    Jangaard, N.O. 1974. The characterization of phenylalanine ammonia-lyase from several plant species.Phytochemistry 13:1765–1768.CrossRefGoogle Scholar
  59. 56.
    Jolley, R.L., Jr., L.H. Evans, N. Makino, H.S. Mason. 1974. Oxytyrosinase. J.Biol, Chem. 249:335–345.Google Scholar
  60. 57.
    Kadlubar, F.F., K.C. Morton, D.M. Ziegler. 1973. Microsomal-catalyzed hydroperoxide-dependent C-oxidation of amines.Biochem, Biophys. Res. Commun. 54: 1255–1261.CrossRefGoogle Scholar
  61. 58.
    Kalghatgi, K.K., P.V. Subba Rao. 1975. Purification, subunit structure, and kinetic properties of phenylalanine ammonia-lyase fromRhizoctoria solani. Biochem. J. 149:65–12.Google Scholar
  62. 59.
    Kaufman, S., D.B. Fisher. 1974. Pterin-requiring aromatic amino acid hydroxylases.In Ref. 46:285–369.Google Scholar
  63. 60.
    Kenyon, G.L., G.D. Hegeman, C. Bonamy. 1976. Cross linking of enzymes by dime thy Isuberimidate in intact cells ofPseudomonas putida. Fed Proc. 35:1672.Google Scholar
  64. 61.
    Klee, C.B., J.A. Gladner. 1972. Isolation of a cysteine-peptide at the active site of histidine ammonia- lyase. J.Biol. Chem. 24:8051–8057.Google Scholar
  65. 62.
    Koukol, J., E.E. Conn. 1961. Metabolism of aromatic compounds in higher plants. 4. Purification and properties of phenylalanine deaminase of hordeun vulgare, j.Biol. Chem. 236:2692–2698.Google Scholar
  66. 63.
    Kuroda, H., M. Shimada, T. Higuchi. 1975. Purification and properties of the 0-methyltransferase involved in the biosynthesis of gymnosperm lignin.Phytochemistry 14:1759–1763.CrossRefGoogle Scholar
  67. 64.
    Lerch, K. 1976.Neurosporatyrosinase: molecular weight, copper content and spectral properties.FEBS Letters. 69:157–160.Google Scholar
  68. 65.
    Levitzki, A., D.E. Koshland, Jr. 1976. The role of negative cooperativity and half-of-the-sites reactivity in enzyme regulation.Current Topics in Cellular Regulation 10: l-40.Google Scholar
  69. 66.
    Lienhard, G.E. 1973. Enzymatic catalysis and transition-state theory.Science 180:149–154.PubMedCrossRefGoogle Scholar
  70. 67.
    Madyastha, K.M., T.D. Meehan, C.J. Coscia. 1976. Characterization of cytochrome P-450 dependent mono- terpene hydroxylase from the higher plantVinca rosea. Biochemistry 15:1097–1102.CrossRefGoogle Scholar
  71. 68.
    Makino, N., P. McMahill, H.S. Mason. 1974. The oxidation state of copper in resting tyrosinase. J.Biol. Chem. 249:6062–6066.PubMedGoogle Scholar
  72. 69.
    Malmström, B.C., L.-B. Andreasson, B. Reinhammar. 1975. Copper-containing oxidases and superoxide dismutase.The Enzymes 7:507–579.CrossRefGoogle Scholar
  73. 70.
    Mason, H.S. 1956. Structure and function of the phenolase complex.Nature 177:79–81.PubMedCrossRefGoogle Scholar
  74. 71.
    Massey, V., P. Hemmerich. 1975. Flavin and pteridine monooxygenases.The Enzymes 12:191–252.CrossRefGoogle Scholar
  75. 72.
    Mayhew, S.G., M.L. Ludwig. 1975. Flavodoxins and electron-transferring flavoproteins.The Enzymes 12: 57–118.CrossRefGoogle Scholar
  76. 73.
    Mclntyre, R.J., P.F.T. Vaughan. 1975. Kinetic studies on the hydroxylation of P-coumaric acid to caffeic acid by spinach-beet phenolase.Biochem, J. 149: 447–461.Google Scholar
  77. 73a.
    Müller, U., D.H.G. Crout. 1975. Experiments with stere- ospecifically-labelled amino acids: convenient synthesis of (2SR, 3SR)-[3-2H1]phenylalanine.Phytochemistry 14:859–860.CrossRefGoogle Scholar
  78. 74.
    Nair, P.M. and L.C. Vining. 1965. Cinnamic acid hydroxyl lase in spinach.Phytochemistry 4:161–168.CrossRefGoogle Scholar
  79. 75.
    Nari, J., C. Mouttet, F. Fouchier, J. Ricard. 1974. Subunit interactions in enzyme catalysis. Kinetic analysis of subunit interactions in the enzyme L- phenylalanine ammonia-lyase.Eur. J. Biochem. 41: 499–515.PubMedCrossRefGoogle Scholar
  80. 76.
    Nari, J. Ch. Mouttet, M.H. Pinna, J. Ricard. 1972. Some physico-chemical properties of L-phenylalanine ammonia-lyase of wheat seedlings.FEBS Letters 23: 220–224.CrossRefGoogle Scholar
  81. 77.
    Neish, A.C. 1961. Formation ofm- andP-coumaric acids by enzymatic deamination of the corresponding isomers of tyrosine.Phytochemistry 1:1–24.CrossRefGoogle Scholar
  82. 78.
    Nowacki, E.K., G.R. Waller. 1975. Use of the metabolic grid to explain the metabolism of quinolizidine alkaloids inLeguminosae. Phytochemistry14:165–171.CrossRefGoogle Scholar
  83. 79.
    Orrenius, S., L. Ernster. 1974. Microsomal cytochrome P-450 linked monooxygenase systems in mammalian tissues.In Ref. 000:215–244.Google Scholar
  84. 80.
    Palmer, G. 1975. Iron-sulfur proteins.The Enzymes 12:1–56.CrossRefGoogle Scholar
  85. 81.
    Parkhurst, J.R., D.S. Hodgins. 1972. Yeast phenyl alanine ammonia-lyase. Properties of the enzyme fromSporobolomyces pararoseusand its catalytic site.Arch, Biochem. Biophys. 152:597–605.CrossRefGoogle Scholar
  86. 82.
    Pfändler, R., D. Scheel, H. Sandermann, Jr., H. Grisebach. 1977. Stereospecificity of plant microsomal cinn- amic acid 4-hydroxylase.Arch, of Biochem, and Bioph. 170:315–316.CrossRefGoogle Scholar
  87. 83.
    Potts, J.R.M., R. Weklych, E.E. Conn. 1974. The 4-hydroxylation of cinnamic acid by sorghum microsomes and the requirement for cytochrome P-450. J.of Biol. Chem. 249, No, 16:5019–5026.Google Scholar
  88. 84.
    Ricard, J., C. Mouttet, J. Nari. 1974. Subunit interactions in enzyme catalysis. Kinetic models for one-substrate polymeric enzymes.Eur. J, Biochem, 41:479–497.CrossRefGoogle Scholar
  89. 85.
    Ricard, J., J. Nari, C. Mouttet. 1972. Kinetics and regulatory properties of L-phenylalanine ammonia- lyase of wheat seedlings. FEBS 8th Meeting Proceedings 25 (Analysis and simulation of biochemical systems-Elsevier, New York,):375–386.Google Scholar
  90. 86.
    Rich, P.R., D.S. Bendall. 1975. Cytochrome components of plant microsomes.Eur, J. Biochem. 55:333–341.CrossRefGoogle Scholar
  91. 87.
    Rich, P.R., R. Cammack, D.S. Bendall. 1975. Electron paramagnetic resonance studies of cytochrome P-450 in plant microsomes.Eur. J. Biochem. 59:281–286.PubMedCrossRefGoogle Scholar
  92. 88.
    Rich, P.R., C.J. Lamb. 1977. Biophysical and enzymological studies upon the interaction of trans-cinnamic acid with higher plant microsomal cytochromes P-450.Eur. J. Biochem. 72:353–360.PubMedCrossRefGoogle Scholar
  93. 89.
    Robb, D.A., S. Gutteridge. 1977. Subunit differences in tyrosinase. Abstracts, Phytochem. Socs. Joint Symp., Ghent.; personal communication.Google Scholar
  94. 90.
    Rose, I.A., K.R. Hanson. 1976. Interpretations of the stereochemistry of enzyme catalyzed reactions.Techniques of Chemistry (Ed, Weissberger)10: 507–553.Google Scholar
  95. 91.
    Russell, D.W. 1971. Properties of the cinnamic acid 4-hydroxylase of pea seedlings and some aspects of its metabolic and developmental control. J.Biol, Chem, 246:3870–3878.Google Scholar
  96. 92.
    Russell, D.W., E.E. Conn, A. Sutter, H. Grisebach. 1968. Hydroxylation-induced migration and retention of tritium on conversion of [4-3H] cinnamic acid to 4-hydroxycinnamic acid by an enzyme from pea seedlings.Biochim, Biophys, Acta 170:210–213.CrossRefGoogle Scholar
  97. 93.
    Schoot Uiterkamp, A.J.M., H.S. Mason. 1973. Magnetic dipole-dipole coupled Cu (II) pairs in nitric oxide- treated tyrosinase: a structural relationship between the active sites of tyrosinase and hemo- cyanin.Proc, Nat. Acad. Sei., U.S.A. 70:993–996.CrossRefGoogle Scholar
  98. 94.
    Schoot Uiterkamp, A.J.M., H. van der Deen, H.C.J. Berendsen, J.F. Boas. 1974. Computer simulation of the EPR spectra of mononuclear and dipolar coupled Cu(II) ions in nitric oxide and nitrite treated hemocyanins and tyrosinase.Biochim. Biophys. Acta 372:407–425.CrossRefGoogle Scholar
  99. 95.
    Schopfer, P. 1971. The phenylalanine ammonia-lyase of the mustard seedlingSinapis albaL.); an electrophoretically homogeneous enz3niie.Planta 99: 339–346.CrossRefGoogle Scholar
  100. 96.
    Shibatani, T., T. Kakimoto, I. Chibata. 1975. Crystalline L-histidine ammonia-lyase ofAchromobacter liquidum. Eur. J. Biochem. 55: 263–269.CrossRefGoogle Scholar
  101. 97.
    Smith, T.A. 1975. Recent advances in the biochemistry of plant amines.Phytochemistry14:865–890.CrossRefGoogle Scholar
  102. 98.
    Snow, M.L., C. Lauinger, C. Kessler. 1968. 1,4-Cyclo-hexadiene-l-alanine (2,5-dihydrophenylalanine), a new inhibitor of phenylalanine for the rat andLeuconostoc dextranicum 8086. J. Org. Chem. 33: 1774–1780.Google Scholar
  103. 99.
    Stafford, H.A. 1974. The Metabolism of Aromatic Compounds. Ann. Rev. Plant Physiol.25:459–486.CrossRefGoogle Scholar
  104. 100.
    Stafford, H.A. 1974. Possible multienzyme complexes regulating the formation of C6-C3phenolic compounds and lignins in higher plants.Recent Advan. Phytochem. 8:53–79.Google Scholar
  105. 101.
    Stafford, H.A., S. Dresler. 1972. 4-Hydroxycinnamic acid hydroxylase and polyphenolase activities inSorghum vulgare. Plant Physiol. 49:590–595.Google Scholar
  106. 102.
    Steelink, C. Biological oxidation of lignin phenols. Recent Advan. Phytochem.4:239–271.Google Scholar
  107. 103.
    Strange, P.G., J. Staunton, H.R. Wiltshire, A.R. Battersby, K.R. Hanson, E.A. Havir. 1972. Stereochemistry of the elimination of ammonia from L- tyrosine catalysed by the enzyme from maize.J. Chem. Soc. 18:2364–2372.Google Scholar
  108. 104.
    Strothkamp, K.G., R.L. Jolley, H.S. Mason. 1976. Quarternary structure of mushroom tyrosinase.Biochem. Biophys. Res. Commun. 70:519–524.PubMedCrossRefGoogle Scholar
  109. 105.
    Ullrich, V., W. Düppel. 1975. Iron and Copper Containing monooxygenases.The Enzymes 12:253–297.CrossRefGoogle Scholar
  110. 106.
    van der Been, H., H. Hoving. 1977. Nitrite and nitric oxide treatment ofHelix pomatiahemocyanin: single and double oxidation of the active site.Biochemistry 16: 3519–3525.CrossRefGoogle Scholar
  111. 107.
    Vanneste, W.H., A. Zuberbühler. 1974. Copper containing oxygenases.In Ref. 46:371–404.Google Scholar
  112. 108.
    Vaughan, P.F.T., V.S. Butt. 1970. The action of o-dihydric phenols in the hydroxylation of p-coumaric acid by a phenolase from leaves of spinach-beet(Beta vulgarisL.)Biochem. J.119:89–94.PubMedGoogle Scholar
  113. 109.
    feughan, P.F.T., V.S. Butt. 1969. The hydroxylation of p-coumaric acid by an enzyme from leaves of spinach beet(Beta vulgaris L.) Biochem. J. 113:109–115.Google Scholar
  114. 110.
    Vaughan P.F.T., R. Eason, J.Y. Paton, G.A. Ritchie. 1975. Molecular weight and amino acid composition of purified spinach beet phenolase.Phytochem. 14: 2383–2386.CrossRefGoogle Scholar
  115. 111.
    Walton, E., V.S. Butt. 1971. The demonstration of cinnamyl-CoA synthetase activity in leaf extracts.Phytochemistry 10:295–304.CrossRefGoogle Scholar
  116. 112.
    Witters, R., R. Lontie. 1975. The formation ofHelix pomatiamethaemocyanin accelerated by azide and fluoride.FEBS Letters 60:400–403.PubMedCrossRefGoogle Scholar
  117. 113.
    Wolfenden, R. 1972. Analog approaches to the structure of the transition state in enzyme reactions.Accts. Chem. Res. 5:10–18.CrossRefGoogle Scholar
  118. 114.
    Young, M.R., G.H.N. Towers, A.C. Neish. 1966. Taxonomic distribution of ammonia-lyases for L-phenyl- alanine and L-tyrosine in relation to lignification.Can. J. Botany. 44:341–349.CrossRefGoogle Scholar
  119. 115.
    Young, O., H. Beevers. 1976. Mixed function oxidases from germinating castor bean endosperm.Phytochemistry 15:359–362.CrossRefGoogle Scholar
  120. 116.
    Zenk, M.H. 1967. Occurence of the “NIH Shift” during in vivo hydroxylation of cinnamic acid in higher plants (Catalpa hybrida). Pflanzenphysiol 57: 477–478.Google Scholar
  121. 117.
    Zimmerman, A., K. Hahlbrock. 1975. Light-induced changes of enzyme activities in parsley cell suspension cultures. Purification and some properties of phenylalanine ammonia-lyase.Arch. Biochem. Biophys. 166: 54–62.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1979

Authors and Affiliations

  • Kenneth R. Hanson
    • 1
  • Evelyn A. Havir
    • 1
  1. 1.Department of BiochemistryThe Connecticut Agricultural Experiment StationNew HavenUSA

Personalised recommendations