Skip to main content

Phenolic Substances and Plant Disease

  • Chapter

Part of the book series: Recent Advances in Phytochemistry ((RAPT,volume 12))

Abstract

One of the major biological properties of phenolic compounds is their antimicrobial activity and it is often assumed that their main role in plants is to act as protective compounds against disease agents such as fungi, bacteria and viruses. Indeed their antifungal activity seems possibly to have been recognized as early as the time of writing of the Book of Leviticus when hyssop (Origanum majorana), which we now know to contain chavicol, was used to cleanse and purify a house after an attack of dry rot.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allen, P. J. 1972. Specificity of thecis-isomers of inhibitors of uredospore germination in the rust fungi. Proc. Nat. Acad. Sci. USA69: 3497–3500.

    Article  PubMed  CAS  Google Scholar 

  2. Allen, P. J., Strange, R. N. and Elnaghy, M. A. 1971. Properties of germination inhibitors from stem rust uredospores. Phytopathol.61: 1382–1389.

    Article  CAS  Google Scholar 

  3. Andreae, W. 1948. The isolation of a blue fluorescent compound from Green Mountain potato tubers infected with leaf roll virus. Can. J. Res.26C: 31.

    Article  CAS  Google Scholar 

  4. Asada, Y. and Matsumoto, I. 1971. Microspectrophoto-metric observations on the cell walls of Japanese radish (Raphanus sativus) root infected by Peronosporo parasitica. Physiol. Plant Path.1: 377–383.

    Google Scholar 

  5. Asada, Y. & Matsumoto, I. 1972. The nature of lignin obtained from downy mildew-infected Japanese radish root. Phytopath. Z.73: 208–214.

    Google Scholar 

  6. Bailey, J. A., Burden, R. S. Mynett, A. and Brown, C. 1977. Metabolism of phaseollin by Septoria nodorum and other non-pathogens of Phaseolus vulgaris. Phytochem.16: 1541–1544.

    Article  CAS  Google Scholar 

  7. Barash, I., Karr, A. L. and Strobel, G. A. 1975. Isolation and characterization of stemphylin, a chromone glycoside from Stemphylium botryosum. Plant Physiol.55:646–651.

    Article  PubMed  CAS  Google Scholar 

  8. Barnes, C. 1976. The effect of infection by Puccinia striiformis Westend, on phenolic metabolism in leaves of Triticum aestivum L. Ph.D. Thesis, University of Hull.

    Google Scholar 

  9. Barnes, C, and Friend, J. 1975. The lack of movement of14C-phenylalanine and14C-cinnamate after administration to leaves of Polygonum and wheat. Phytochem.14: 139–142.

    Article  CAS  Google Scholar 

  10. Baruah, P. & Swain, T. 1959. The action of potato phenolase on flavonoid compounds. J. Sci. Fd. Agric.1O: 125–129.

    Article  Google Scholar 

  11. Bateman, D. F. 1976. Plant cell wall hydrolysis by pathogens. In: Biochemical Aspects of Plant- Parasite Relationships. (Eds. J. Friend and D. R. Threlfall) Academis Press, London and New York. 79–103.

    Google Scholar 

  12. Bateman, D. F. and Beer, S. V. 1965. Simultaneous production and synergistic action of oxalic acid and polygalacturonase during pathogenesis by Sclerotium rolfsii. Phytopathol.55: 204–211.

    CAS  Google Scholar 

  13. Beckman, C. H., Mueller, W. C. and Mace, M. E. 1974. The stabilization of artificial and natural cell wall membranes by phenolic infusion and its relation to wilt disease resistance. Phytopathol.64: 1214–1220.

    Article  CAS  Google Scholar 

  14. Bilton, J. N., Debnam, J. R. and Smith, I. M. 1976. 6-Hydroxy-pterocarpans from red clover. Phytochem.15: 1411–1412.

    Article  CAS  Google Scholar 

  15. Burden, R. S. and Bailey, J. A. 1975. Structure of the phytoalexin from Soybean. Phytochem.14: 1389–1390.

    Article  CAS  Google Scholar 

  16. Burrell, M. M. & Ap Rees, T. 1974. Metabolism of phenylalanine and tyrosine by rice leaves infected by Piricularia oryzae. Physiol. Plant Pathol.4: 497–508.

    CAS  Google Scholar 

  17. Byrde, R. J. W., Fielding, A. H. and Williams, A. H. 1960. The role of oxidized polyphenols in the varietal resistance of apples to brown rot. In : Phenolics in Plants in Health and Disease. (Ed. J. B. Pridham) Pergamon Press, Oxford. 95–99.

    Google Scholar 

  18. Cartwright, D., Langcake, P., Pryce, R. J., Leworthy, D. P. and Ride, J. P. 1977. Chemical activation of host defence mechanisms as a basis for crop protection. Nature267: 511–513.

    Article  CAS  Google Scholar 

  19. Clarke, D. C. 1973. The accumulation of scopolin in potato tissue in response to infection. Physiol. Plant Pathol.3: 347–358.

    CAS  Google Scholar 

  20. Cole, A. L. J. 1970. Pectic Enzyme activity from Phytophthora infestans. Phytochem.9: 337–340.

    Article  CAS  Google Scholar 

  21. Cruickshank, I. A. M. and Perrin, D. R. 1963. Phytoalexins of the Leguminosae. Phaseollin from Phaseolus vulgaris. Life Sci.2: 680–682.

    Article  CAS  Google Scholar 

  22. Daly, J. M. and Knoche, H. W. 1976. Hormonal involve ment in metabolism of host-parasite relationships. (Ed. J. Friend and D. R. Threlfall) Academic Press, London and New York. 117–113.

    Google Scholar 

  23. Deverall, B. J. 1976. Current perspectives in research on phytoalexins. In: Biochemical Aspects of Plant-Parasite Relationships. (Eds. J. Friend and D. R. Threlfall) Academic Press, London and New York. 208–223.

    Google Scholar 

  24. Devys, M., Bousquet, J. F., Skajennikoff, M. And Barbier, J. 1974. L’ochracine (melleine), Phytotoxine isolee de milieu de culture de Septoria nodorum Berk. Phytopath Z.81:92–94.

    Article  CAS  Google Scholar 

  25. Parkas, G. L. and Kiraly, Z. 1962. Role of phenolic compounds in the physiology of plant diseases and disease resistance. Phytopath. Z.44:105–50.

    Article  Google Scholar 

  26. Fawcett, C. H. and Spencer, D. M. 1967. Antifungal phenolic acids in apple fruits after infection with Sclerotinia fructigena. Ann. Appl. Biol.60: 87–96.

    Article  PubMed  CAS  Google Scholar 

  27. Fawcett, C. H. & Spencer, D. M. 1968. Sclerotinia fructigena infection and chlorogenic acid content in relation to antifungal compounds in apple fruits. Ann. Appl. Biol.61: 245–253.

    Article  PubMed  CAS  Google Scholar 

  28. Friend, J. 1973. Resistance of potato to Phytophthora. In: Fungal Pathogenicity and the Plant’s Response. (Eds. R. J. W. Byrde and C. V. Cutting) Academic Press, London and New York. 383–396.

    Google Scholar 

  29. Friend, J. 1976. Lignification in infected tissue. In Biochemical Aspects of Plant-Parasite Relationships. (Eds. J. Friend and D. R. Threlfall) Academic Press, London and New York. 291–303.

    Google Scholar 

  30. Friend, J. 1977. Biochemistry of Plant Pathogens. In: International Review of Biochemistry, Plant Biochemistry II. (Ed. D. H. Northcote) University Park Press, Baltimore. Vol. 13, 141–182.

    Google Scholar 

  31. Friend, J. and Knee, M. 1969. Cell wall changes in potato tuber tissue infected with Phytophthora infestans. J. Exp. Bot.20:763–775.

    Article  CAS  Google Scholar 

  32. Friend, J., Reynolds, S. B. and Aveyard, M. A. 1973. Phenylalanine ammonia lyase, chlorogenic acid and lignin in potato tuber tissue inoculated with Phytophthora infestans. Physiol. Plant Pathol.3: 495–507.

    CAS  Google Scholar 

  33. Friend, J. and Thornton, J. D. 1974. Caffeic acid-O- methyl transferase, phenolase and peroxidase in potato tuber tissue inoculated with Phytophthora infestans. Phytopath. Z.84:56–64.

    Google Scholar 

  34. Friend, J. and Threlfall, D. R. 1976. Biochemical Aspects of Plant-Parasite Relationships. Academic Press, London and New York.

    Google Scholar 

  35. Friend, J., Ward, M. and Swain, T. 1977. Increase in bound ferulic acid in potato leaves on infection with Phytophthora infestans. In preparation.

    Google Scholar 

  36. Fuchs, A., Rohringer, R. and Samborski, D. J. 1967. Metabolism of aromatic compounds in healthy and rust-infected primary leaves of wheat. II. Studies with L-phenylalanine-U–14C, L-tyrosine- U-’14c and ferulate-U–14C. Can. J. Bot.45: 2137–2153.

    Article  CAS  Google Scholar 

  37. Gans, P. T. 1977. Physiological response of potato tubers to change and to infection by Phoma exigua f. sp. foveata. Ann. Appl. Biol., in press.

    Google Scholar 

  38. Green, N. E., Hadwiger, L. A. & Graham, S. O. 1975. Phenylalanine ammonia-lyase, tyrosine ammonia- lyase and lignin in wheat inoculated with Erisyphe graminis f. sp. tritici. Phytopathol.65:1071–74.

    Article  CAS  Google Scholar 

  39. Harbone, J. B., Ingham, J. L., King, L. and Payne, M. 1976. The isopentenyl isoflavone luteone as a pre-infectional antifungal agent in the genus Lupinus. Phytochem.15: 1485–1487.

    Article  Google Scholar 

  40. Harris, P. J. and Hartley, R. D. 1976. Detection of bound ferulic acid in cell walls of the Gramineae by ultraviolet fluorescence microscopy. Nature259: 508–510.

    Article  CAS  Google Scholar 

  41. Henderson, S. J. 1975. Role of lignin in the defence reaction of Solanum tuberosum L. following attack by Phytophthora infestans (Mont.) de Bary. Ph. D. Thesis, University of Hull.

    Google Scholar 

  42. Hess, S. L., Allen, P. J., Nelson, D. and Lester, H. 1975. Mode of action of methyl cis-ferulate, the self-inhibitor of stem rust uredospore germination. Physiol. Plant Pathol.5: 107–112.

    CAS  Google Scholar 

  43. Hijwegen, T. 1963. Lignification, a possible mechanism of active resistance against pathogens. Neth. J. Plant Path.69: 314–317.

    CAS  Google Scholar 

  44. Hochberg, M. and Cohen, Y. 1977. Scopoletin-induced catalase inhibition in tobacco leaves infected by Peronospora tabacina Adam. Israel J. Botany26:48.

    Google Scholar 

  45. Hoover, J. D., Wender, S. H. and Smith, E. C. 1977. Effects of phenolic compounds on glucose–6-phos- phate dehydrogenase isoenzymes. Phytochem.16: 199–201.

    Article  CAS  Google Scholar 

  46. Hughes, J. C. and Swain, T. 196O. Scopolin production in potato tubers infected with Phytophthora infestans. Phytopathol.50:398–402.

    CAS  Google Scholar 

  47. Hunter, R. E. 1974. Inactivation of pectic enzymes by polyphenols in cotton seedlings of different ages infected with Rhizoctonia solani. Physiol. Plant Path.4: 151–159.

    CAS  Google Scholar 

  48. Imbert, M. P. and Wilson, L. A. 1970. Stimulatory and inhibitory effects of scopoletin on lAA oxidase preparations from sweet potato. Phytochem.9: 1787–1794.

    Article  CAS  Google Scholar 

  49. Ingham, J. L. 1976. A comparative study of phytoalexins from the Leguminosae. Ph.D. Thesis, University of Reading.

    Google Scholar 

  50. Ingham, J. L. 1976. Fungal modification of pterocarpan phytoalexins from Mililotus alba and Trifolium pratense. Phytochem.15: 1489–1495.

    Article  CAS  Google Scholar 

  51. Ingham, J. L. 1977. Isoflavan phytoalexins from Anthyllis, Lotus and Tetragonolobus. Phytho- chem.16:1279–1282.

    CAS  Google Scholar 

  52. Ingham, J. L. 1977. An isoflavan phytoalexin from leaves of Glycyrrhiza glabra. Phytochem.16: 1457–1458.

    Article  CAS  Google Scholar 

  53. Ingham, J. L. and Harborne, J. B. 1976. Phytoalexin induction as a new dynamic approach to the study of systematic relationships among higher plants. Natrure260:241–243.

    Article  CAS  Google Scholar 

  54. Ingram. D. S. 1977. Cell death and resistance to bio-trophs. Ann. Appl. Biol, in the press.

    Google Scholar 

  55. Johnson, G. and Schaal, L. A. 1952. Relation of chlorogenic acid to scab resistance in potatoes. Science:115 627–629.

    Article  PubMed  CAS  Google Scholar 

  56. Kent, S. S. and Strobel, G. A. 1976. Phytotoxin from Septoria nodorum. Trans. Br. mycol. Soc.67: 354–358.

    Article  Google Scholar 

  57. Kern, H. 1972. Phytotoxins produced by Fusaria. In: Phytotoxins in Plant Diseases. (Eds. R. K. S. Wood, A. Ballio and A. Graniti) Academic Press, London and New York. 35–45.

    Google Scholar 

  58. Knee, M. 1970. The use of a new, rapid micro-method for analysing changes in the carbohydrate fractions of potato tuber tissue after invasion by Phytophthora infestans. Phytochem.9: 2075–2083.

    Article  CAS  Google Scholar 

  59. Knee, M. and Friend, J. 1968. Extracellular "galacta-nase" activity from Phytophthora infestans (Mont.) de Bary. Phytochem.7: 1289–1291.

    Article  CAS  Google Scholar 

  60. Knee, M. and Friend, J. 1970. Some properties of the galactanase secreted by Phytophthora infestans (Mont.) de Bary. J. Gen. Microbiol.7:23–30.

    Google Scholar 

  61. Kosuge, T. 1969. The role of phenolics in host response to infection. Ann. Rev. Phytopath.7: 195–222.

    Article  CAS  Google Scholar 

  62. Kuc, J. 1957. A biochemical study of the resistance of potato tuber tissue to attach by various fungi. Phytopathol.47: 676–680.

    CAS  Google Scholar 

  63. Kuc, J., Currier, W. W. and Shih, M. J. 1976. Terpenoid Phytoalexins. In: Biochemical Aspects of Plant-Parasite Relationships. (Eds. J. Friend and D. R. Threlfall) Academic Press, London and New York. 225–237.

    Google Scholar 

  64. Kuc, J., Henze, R. E., Ullstrup, A. J. and Quackenbush, F. W. 1956. Chlorogenic and caffeic acids as fungistatic agents produced by potatoes in response to inoculation with Helminthosporium carbonum. J. Amer. Chem. Soc.78: 3123–3125.

    Article  CAS  Google Scholar 

  65. Kuhn, P. J. and Smith, D. A. 1976. The metabolism of the phytoalexin kievitone by Fusarium solani phaseoli. Proc. Am. Phytopath. Soc.3: 261.

    Google Scholar 

  66. Kuhn, P. J., Smith, D. A. and Ewing, D. F. 1977.5, 7, 2’, 4’-Tetrahydroxy–8-(3"-hydroxy–3"-methyl- butyD-isoflavanone, a metabolite of kievitone produced by Fusarium solani f. sp. phaseoli. Phytochem.16: 296–297.

    Article  CAS  Google Scholar 

  67. Langcake, P. and Pryce, R. J. 1976. The production of resveratrol by Vitis vinifera and other members of the Vitaceae as a response to infection or injury. Physiol. Plant Path.9: 77–86.

    CAS  Google Scholar 

  68. Langcake, P. and Pryce, R. J. 1977. A new class of phytoalexins from grapevines. Experientia33: 151–52.

    Article  PubMed  CAS  Google Scholar 

  69. Lee, S. and LeTourneau, D. J. 1958. Chlorogenic acid content and Verticillium wilt resistance of potatoes. Phytopathol.48: 268–274.

    CAS  Google Scholar 

  70. Lyne, R. L., Mülheim, L. J. and Leworthy, D. P. 1976. New pterocarpinoid phytoalexins of soybean. J. C. S. Chem. Comm. 497–498.

    Google Scholar 

  71. McClean, J. G., Le Tourneau, D. J. and Guthrie, J. W. 1961. Relation of histochemical tests for phenols to Verticillium wilt resistance of potatoes. Phytopathol.51:84–89.

    Google Scholar 

  72. Macko, v., Staples, R. C., Yann, Z. and Granados, R. R. 1976. Self-inhibitors of fungal spore germination. In: The Fungal Spore: Form and Function. (Eds. D. J. Weber and W. M. Hess) J. Wiley & Sons, New York. 73–98.

    Google Scholar 

  73. Mayr, H. H., Diskus, A. and Beck, W. 1963. Accumulation of scopoletin in tissue of Nicotiana tabacum L. infected by Peronospora tabacina Adams. Phytopath. Z.47: 95–97.

    Article  CAS  Google Scholar 

  74. Morris, A. J. and Smith, D. A. 1977. Phytoalexin formation in bean hypocotyls induced by cell- free mycelial extracts of Rhizoctonia and Fusarium Ann. Appl. Biol., in the press.

    Google Scholar 

  75. Mullen, J. M. and Bateman, D. F. 1975. Enzymatic degradation of potato cell walls in potato virus X-free and potato virus X-infected potato tubers by Fusarium roseum "Avenaceum". Phytopathol.65: 797–802.

    Article  CAS  Google Scholar 

  76. Muller, K. O. 1958. Studies on phytoalexins. I. The formation and immunological significance of phytoalexin produced by Phaseolus vulgaris in response to infection with Sclerotinia fructicola and Phytophthora infestans. Aust. J. Biol. Sci.11: 275.

    Google Scholar 

  77. Muller, K. O. and Borger, H. 1940. Experimentelle Untersuchungen über die Phytophthora-Resistenze der Kartoffel. Arb. Biol. Reichsanstalt. Landw. Forstw. Berlin,23: 189–231.

    Google Scholar 

  78. Mulvena, D., Webb, E. C. and Zerner, B. 1969. 3,4- Dihydroxy-benzaldehyde, a fungistatis substance from green Cavendish bananas. Phytochem.8: 393–395.

    Article  CAS  Google Scholar 

  79. Ohguchi, T. and Asada, Y. 1974. Dehydrogenation polymerization products of £-hydroxycinnamyl alcohols by isoperoxidases obtained from downy mildew-infected roots of Japanese radish (Raphanus sativus). Physiol. Plant Pathol.5: 183–192.

    Google Scholar 

  80. Okuno, T., Ishita, T., Sawai, K. and Matsumoto, T. 1974. Characterization of alternariolide, a host-specific toxin produced by Alternaria mali Roberts. Chemistry Letters 1974; 635–638.

    Article  Google Scholar 

  81. Overeem, J. C. 1976. Pre-existing antimicrobial substances in plants and their role in disease resistance. In: Biochemical Aspects of Plant- Parasite Relationships. (Eds. J. Friend and D. R. Threlfall) Academic Press, London and New York. 195–206.

    Google Scholar 

  82. Patil, S. S. 1974. Toxins produced by phytopathogenic bacteria. Ann. Rev. Phytopath.12: 259–279.

    Article  CAS  Google Scholar 

  83. Perrin, D. R. and Bottomley, W. 1962. Studies on phytoalexins. V. The structure of pisatin from Pisum sativum L. J. Amer. Chem. Soc.84:1919–22.

    CAS  Google Scholar 

  84. Pickering, J. W., Powell, B. L., Wender, S. H. And Smith, E. C. 1973. Ferulic acid: a substrate for two isoperoxidases from Nicotiana tabacum tissue cultures Phytochem. 12: 2639–2643.

    Article  CAS  Google Scholar 

  85. Pinkas, J., Lavie, D. and Chorin, M. 1968. Fungistatic constituents in citrus varieties resistant to the Mal-secco disease. Phytochem.7: 169–174.

    Article  CAS  Google Scholar 

  86. Preson, N. W. 1977. Cajanone: an antifungal iso-flavanone from Cajanus cajan. Phytochem. 26: 143–144.

    Article  Google Scholar 

  87. Pryce, R. J. and Langcake, P. 1977. Viniferin an antifungal resveratrol trimer from grapevines. Phytochem.16: 1452–1454.

    Article  CAS  Google Scholar 

  88. Ride, J. P. 1975. Lignification in wounded wheat leaves in response to fungi and its possible role in resistance. Physiol. Plant Path.5: 125–134.

    CAS  Google Scholar 

  89. Robertson, N. F., Friend, J. and Aveyard, M. A. 1969. Production of phenolic acids by potato tissue culture after injection by Phytophthora infestans. Phytochem.8: 7.

    Google Scholar 

  90. Robertson, N. F., Friend, J., Aveyard, M. A., Brown, J., Uffeee, M. and Homans, A. L. 1968. The accumulation of phenolic acids in tissue culture combinations of Solanum tuberosum and Phytophthora infestans. J. Gen. Microbiol.54: 261–268.

    Article  PubMed  CAS  Google Scholar 

  91. Rohringer, R., Fuchs, A., Lunderstadt, J. and Samborski, D. J. 1967. Metabolism of aromatic compounds in healthy and rust-infected primary leaves of what. I. Studies with14CO2, quinate-U–14C, and shikimate-U–14C as precursors. Can. J. Bot.45: 863–889.

    Article  CAS  Google Scholar 

  92. Rubin, B. and Aksenova, A. 1957. Participation of polyphenolase systems in defence reactions of potato against Phytophthora infestans. Biokhim- iya (Eng. Trans.)22:191–197.

    CAS  Google Scholar 

  93. Sakuma, T., Yoshihara, T. and Sakamura, S. 1976. The role of phenolic compounds in the resistance of red clover tissue to infection by Kabatiella caulivora. In: Biochemistry and Cytology of Plant-Parasite Interaction. (Eds. K. Tomiyama et al.) Kodansha Ltd., Tokyo and Elsevier, Amsterdam. 223–232.

    Google Scholar 

  94. Schafer, P., Wender, S. H. and Smith, E. C. 1971. Effect of scopoletin on two anodic isoperoxidases isolated from tobacco tissue culture W–38. Plant Physiol.48: 232–233.

    Article  PubMed  CAS  Google Scholar 

  95. Scheffer, R. P. 1976. Selective effects of fungal toxins on plant cells. In: Biochemistry and Cytology of Plant-Parasite Interaction. (Eds. K. Tomiyama et.al.) Kodansha Ltd., Tokyo and Elsevier, Amsterdam. 112–123.

    Google Scholar 

  96. Schlosser, E. 1972. The Cercospora beticola toxin. In: Phytotoxins in Plant Diseases. (Eds. R. K. S. Wood, A. Ballio and A. Graniti) Academic Press, London and New York. 425.

    Google Scholar 

  97. Sequeira, L. 1969. Synthesis of scopolin and scopoletin in tabacco plants infected by Pseudomonas solanacearum. Phytopathol.59:473–478.

    CAS  Google Scholar 

  98. Sherwood, R. T. and Vance, C. P. 1976. Histochemistry of papillae formed in reed canary grass leaves in response to non-infecting pathogenic fungi. Phytopathol.66: 503–510.

    Article  Google Scholar 

  99. Sridhar, R. and Ou, S. H. 1974. Biochemical changes associated with the development of resistant and susceptible types of rice blast lesions. Phyto- path. Z.79: 220–230.

    Google Scholar 

  100. Stahmann, M. A. and Demorest, D. M. 1973. Changes in enzymes of host and pathogen with special reference to peroxidase interaction. In: Fungal Pathogenicity and the Plant’s Response. (Eds. R. J. W. Byrde & C. V. Cutting) Academic Press, London and New York. 405–420.

    Google Scholar 

  101. Strobel, G. A. 1974. Phytotoxins produced by plant parasites. Ann. Rev. Plant Physiol.25:541–566.

    Article  CAS  Google Scholar 

  102. Strobel, G. A. 1976. Toxins of plant pathogenic bacteria and fungi. In: Biochemical Aspects of Plant-Parasite Relationships. (Eds. J. Friend and D. R. Threlfall) Academic Press, London and New York. 135–159.

    Google Scholar 

  103. Swain, T. 1977. Secondary compounds as protective agents. Ann. Rev. Plant Physiol.28:479–501.

    Article  CAS  Google Scholar 

  104. Tanguy, J. and Martin, C. 1972. Phenolic compounds and the hypersensivity reaction in Nicotiana tabacum infected with tobacco mosaic virus. Phytochem.11: 19–28.

    Article  CAS  Google Scholar 

  105. Thomson, R. H. 1977. Recent advances in the chemistry and biochemistry of the quinone pigments. This book.

    Google Scholar 

  106. Tomiyama, K. and Stahmann, M. A. 1964. Alteration of oxidative enzymes in potato tuber tissue by infection with P. infestans. Plant Physiol.39: 483–490.

    Article  PubMed  CAS  Google Scholar 

  107. Towers, G. H. N. and Wat, C.-K. 1977. Aromatic metabolism in fungi. This book.

    Google Scholar 

  108. Valle, G. 1957. Antifungal factors in potato leaves. Acta. chem. Scand.11: 395–396.

    Article  CAS  Google Scholar 

  109. Vance, C. P. and Sherwood, R. T. 1976. Cycloheximide treatments implicate papilla formation in resistance of reed canary grass to fungi. Phytopathol.66: 498–502.

    Article  Google Scholar 

  110. Vance, C. P. and Sherwood, R. T. 1976. Regulation of lignin formation in reed canary grass in relation to disease resistance. Plant Physiol. 915–919.

    Google Scholar 

  111. Van Etten, H. D. and Pueppke, S. 1976. Isoflavonoid phytoalexins. In: Biochemical Aspects of Plant- Parasite Relationships. (Eds. J. Friend and D. R. Threlfall) Academic Press, London and New York. 239–289.

    Google Scholar 

  112. Van Etten, H. D. and Smith, D. A. 1975. Accumulation of antifungal isoflavonoids and 1 -hydroxy phase- ollone, a phaseollin metabolite, in bean tissue infected with Fusarium solani f. sp. phaseoli. Physiol. Plant Pathol.5: 225–231.

    Google Scholar 

  113. Van Sumere, C. F., Van Sumere-de Preter, C., Vining, L. C. and Ledingham, G. A. 1957. Coumarins and phenolic acids in the uredospores of wheat stem rust. Can. J. Microbiol.3: 847–862.

    Article  Google Scholar 

  114. Waites, M., Reynolds, S. B. and Friend, J. 1977. The metabolism of chlorogenic acid in tuber discs of a resistant and a susceptible potato cultivar following inoculation with Fusarium solani var caeruleum.

    Google Scholar 

  115. Walker, J. C. and Stahmann, M. A. 1955. Chemical nature of disease resistance. Ann. Rev. Plant Physiol.6: 351–366.

    Article  CAS  Google Scholar 

  116. Walker, J. R. L. 1969. Inhibition of the apple phenolase system through infection by Penicillium expansum. Phytochem.8: 561–566.

    Article  CAS  Google Scholar 

  117. Walker, J. R. L. 1970. Phenolase inhibitor from cultures of Penicillium expansum which may play a part in fruit rotting. Nature, Lond.227: 298–299.

    Article  CAS  Google Scholar 

  118. Wong, E. and Latch, G. C. M. 1971. Coumestans in diseased white clover. Phytochem.10: 466–468.

    Article  CAS  Google Scholar 

  119. Wood, R. K. S. 1976. Killing of protoplasts. In: Biochemical Aspects of Plant-Parasite Relationships. (Eds. J. Friend and D. R. Threlfall) Academic Press, London and New York. 105–116.

    Google Scholar 

  120. Zucker, M. and Hankin, L. 1970. Physiological basis for a cycloheximide-induced soft rot of potatoes byPseudomonas fluorescens. Ann. Bot.34: 1047–1062.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1979 Plenum Press, New York

About this chapter

Cite this chapter

Friend, J. (1979). Phenolic Substances and Plant Disease. In: Swain, T., Harbone, J.B., Van Sumere, C.F. (eds) Biochemistry of Plant Phenolics. Recent Advances in Phytochemistry, vol 12. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-3372-2_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-3372-2_17

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-3374-6

  • Online ISBN: 978-1-4684-3372-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics