Advertisement

Oxidases in Aromatic Metabolism

  • V. S. Butt
Part of the Recent Advances in Phytochemistry book series (RAPT, volume 12)

Abstract

The three major enzymes able to catalyze the oxidation of polyphenols — peroxidase, laccase and polyphenol oxidase — were each discovered before the turn of the century. The oxidation of tincture of guaiac to a blue colour by hydrogen peroxide in the presence of extracts of some mushrooms and animal tissues was first demonstrated by Schoenbein50in 1855, the requirement for thermolabile substances in the darkening and hardening of juice from the Oriental lacquer tree (Rhus vernicifera) was reported by Yoshida70in 1883 and tyrosinase was extracted fron mushrooms by Bertrand5in 1896. Bertrand4suggested, at about the same time, that laccase, and later tyrosinase, were metalloenzymes, in which the presence of copper was later established by Keilin and Mann29a,29b; the presence and function of iron in peroxidase was also demonstrated by Keilin and Mann29the enzyme being crystallized soon afterwards by Theorell56in 1942. Since then, extensive investigations of the mechanisms of oxidation catalyzed by these enzymes have followed leading to reaction schemes which account in part or whole for their kinetic properties (see, for example, Hamilton23; Malmström et al.35; Yamazaki et al.69). Yet despite their long history, the functions of these enzymes in the metabolism of aromatic compounds remain largely unknown, though with some guidelines along which to work.

Keywords

Oxidase Activity Caffeic Acid Polyphenol Oxidase Broad Bean Hydroxylase Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bartlett, D.J., J.E. Poulton, V.S. Butt. 1972. Hydroxylation of p-coumaric acid by illuminated chloroplasts from spinach beet leaves.FEBS Letters23: 265–267.CrossRefGoogle Scholar
  2. 2.
    Barz, W. 1976. Abbau von Flavonoiden und Isof lavonoiden-ein Überblick.Ber. Deutsch. Bot. Ges. 88: 71–81.Google Scholar
  3. 3.
    Beevers, H., W. O. James. 1948. The behaviour of secondary and tertiary amines in the presence of catechol and belladonna catechol oxidase.Biochem. J. 43: 636–639.PubMedGoogle Scholar
  4. 4.
    Bertrand, G. 1894.Sur le latex de l’arbre á lacque. Coipt. rend. Acad. Sci., Paris118: 1215–1218.Google Scholar
  5. 5.
    Bertrand, G. 1896.Sur une nouvelle oxydase, ou ferment soluble oxydant, d’origine végétale. Compt. rend. Acad. Sci., Paris122: 1215–1217.Google Scholar
  6. 6.
    Bolkard, K. H., M. H. Zenk. 1968.Zur Biosynthese methoxy- lierter Phenole in höheren Pflanzen. Z. Pflanzenphysiol. 59: 439–444.Google Scholar
  7. 7.
    Bolwell, G. P. 1974. The control of enzyme levels in the biosynthesis of plant phenolics. D. Phil. Thesis, Oxford.Google Scholar
  8. 8.
    Butt, V. S. 1976. Enzymic controls in the biosynthesis of lignin and flavonoids. In Perspectives in Experimental Biology, Vol. II (Ed.) N. Sunderland, Pergamon Press, Oxford, pp. 357–367.Google Scholar
  9. 9.
    Camm, E. L., G. H. N. Towers. 1973.Phenylalanine ammonia lyase. Phytochemistrv12: 961–973CrossRefGoogle Scholar
  10. 10.
    Czichi, U., H. Kindl. 1975.A model of closely assembled consecutive enzymes on membranes: Formation of hydroxy- cinnamic acids from L-phenylalanine on thylakoids of Dunaliella marina. Hoppe Seyler’s Z. physiol. Chem. 356: 475–485.Google Scholar
  11. 11.
    Czichi, U., H. Kindl. 1975.Formation of p-coumaric acid and o-coumaric acid from L-phenylalanine by microsomal membrane fractions from potato: evidence of membrane- bound enzyme complexes. Planta125: 115–125Google Scholar
  12. 12.
    Czichi, U., H. Kindl. 1977.Phenylalanine ammonia lyase and cinnamic acid hydroxylases as assembled consecutive enzymes on microsomal membranes of cucumber cotyledons: cooperation and subcellular distribution. Planta134: 133–143.CrossRefGoogle Scholar
  13. 13.
    Dansette, P., R. Azerad. 1970.A new intermediate in naphthoquinone and menaquinone biosynthesis. Biochem. Biophys. Res. Commun. 40: 1090–1095.Google Scholar
  14. 14.
    Durst, F. 1976.The correlation of phenylalanine ammonialyase and cinnamic acid-hydroxylase activity changes in Jerusalem artichoke tuber tissue. Planta132: 279–284.CrossRefGoogle Scholar
  15. 15.
    Ebel, J., B. Schaller-Hekeler, K.-H. Khobloch, E. Wellmann, H. Grisebach, K. Hahlbrock. 1974.Coordinated changes in enzyme activities of phenylpropanoid metabolism during the growth of soy bean suspension cultures. Biochlm. Biophys. Acta362: 417–424.Google Scholar
  16. 16.
    Farkas, G. L., Z. Király, F. Solymosy. 1960.Role of oxidative metabolian in the localization of plant viruses. Virology12: 408–421.PubMedCrossRefGoogle Scholar
  17. 17.
    Freuderiberg, K. 1959. Biochemische Vorgänge bei der Holzbildung. In Biochemistry of wood (Ed.) K. Kratzl, G. Billeg. Proc. IVth Inter. Congr. Biochem. Vol. II, Pergamon Press, London, pp. 121–136.Google Scholar
  18. 18.
    Fritsch, H., H. Grisebach. 1975.Biosynthesis of cyanidin in cell cultures of Haplopappus gracilis. Phytochemistry14: 2437–2442.CrossRefGoogle Scholar
  19. 19.
    Gordon, S. A., L. G. Paleg. 1961.Formation of äuxin from tryptophan through the action of polyphenols. Plant Physiol. 36: 838–845.PubMedCrossRefGoogle Scholar
  20. 20.
    Griffith, T., E. E. Conn. 1973.Biosynthesis of 3,4- dihydroxyphenylalanine in Vicia faba. Phytochemistry12: 1651–1656.CrossRefGoogle Scholar
  21. 21.
    Hahlbrock, K., J. Ebel, R. Ortmann, A. Sutter, E. Wellmann, H. Grisebach. 1971.Regulation of enzyme activities related to the biosynthesis of flavone glycosides in cell suspension cultures of parsley (Petroselinum hortense). Biochim. Biophys. Acta244: 7–15.Google Scholar
  22. 22.
    Halliwell, B. 1975.Hydroxylation of p-coumaric acid by illuminated chloroplasts. The role of superoxide. Eur. J. Biochem. 55: 355–360.PubMedCrossRefGoogle Scholar
  23. 23.
    Hamilton, G. A. 1969.Mechanisms of two- and four-electron oxidations catalyzed by sane metalloenzymes. Adv. Enzymol. 32: 55–96.Google Scholar
  24. 24.
    Harkin, J. M., J. R. öbst. 1973.Lignification in trees: indication of exclusive peroxidase participation. Science180: 296–298.PubMedCrossRefGoogle Scholar
  25. 25.
    Hepler, P. K., R. M. Rice, W. A. Terranova. 1972.Cyto- chemical localization of peroxidase activity in wound vessel members of Coleus. Can. J. Bot. 50: 977–983.CrossRefGoogle Scholar
  26. 26.
    Jackson, H., L. P. Kendal. 1949.The oxidation of catechol and hanocatechol by tyrosinase in the presence of amino-acids. Biochem. J. 44: 477–487.PubMedGoogle Scholar
  27. 27.
    James, W. O., E. A. H. Roberts, H. Beevers, P. C. de Kock. 1948.The secondary oxidation of amino acids by the catechol oxidase of Belladonna. Biochem. J. 43: 626–636.Google Scholar
  28. 28.
    Jolley, R. L., L. H. Evans, N. Makino, H. S. Mason. 1974.Qxytyrosinase. J. Biol. Chem. 249:335–345.PubMedGoogle Scholar
  29. 29.
    Keilin, D., T. Mann. 1937.On the haematin compound of peroxidase. Proc. Roy. Soc., 122 B: 119–133.Google Scholar
  30. 29.
    Keilin, D., T. Mann. 1938.Polyphenol oxidase. Purification, nature and properties. Proc. Roy. Soc. 125 B: 187–204.CrossRefGoogle Scholar
  31. 29b.
    Keilin, D., T. Mann. 1939.Laccase, a blue copper- protein oxidase fron the latex of Rhus succedenea. Nature143: 23–24.CrossRefGoogle Scholar
  32. 30.
    Lamb, C. J., P. H. Rubery. 1976.Photocontrol of chloro-genic acid biosjnithesis in potato tuber discs. Phyto- chemistry15: 665–668.Google Scholar
  33. 31.
    Legrand, M., B. Frit ig, L. Hirth. 1976.Enzymes of the phenylpropanoid pathway and the necrotic reaction of hypersensitive tobacco to tobacco mosaic virus. Phyto- chemistry15: 1353–1359.Google Scholar
  34. 32.
    Leistner, E. 1976.Chinoide Farbstoffe. Ber. Deutsch. Bot. Ges. 88: 163–178.Google Scholar
  35. 33.
    Löffelhardt, W., B. Ludwig, H. Kindl. 1973.Thylakoid- gebimde L-Phenylalanine-Anomoniak-Lyase. Hoppe Seyler’s Z. physiol. Chem. 354: 1006–1017.Google Scholar
  36. 34.
    Mcintyre, R. J., P. F. T. Vaughan. 1975.Kinetic studies on the hydroxylat ion of £-coumaric acid to caffeic acid by spinach-beet phenolase. Biochem. J. 149: 447–461.PubMedGoogle Scholar
  37. 35.
    Malmstrtta, B. G., L.-E. Andréasson, B. Reinhammr. 1975. Copper-containing oxidases and superoxide dismutase. In The Enzymes (Ed.) P. D. Boyer. 3rd. Edn. Vol. XII, Academic Press, New York. pp. 507–579.CrossRefGoogle Scholar
  38. 36.
    Mason, H. S. 1955.Comparative biochemistry of the phenol lase conplex. Adv. Enzymol. 16: 105–184.Google Scholar
  39. 37.
    Mason, H. S. 1957.Mechanisms of oxygen metabolism. Adv. Enzymol. 19: 79–233.Google Scholar
  40. 38.
    Mink, G. I. 1965.Inactivation of Tulare apple mosaic virus by o-quinones. Virology26: 700–707.PubMedCrossRefGoogle Scholar
  41. 39.
    Overeem, J. C. 1976. Pre-existing antimicrobial sub stances in plants and their role in disease resistance. In Biochemical Aspects of Plant-Parasite Relationships (Ed.) J. Friend, D. R. Threlfall, Academic Press, London, pp. 195–206.Google Scholar
  42. 40.
    Parish, R. W. 1972.The intracellular location of phenol oxidases, peroxidase and phosphatases in the leaves of spinach beet (Beta vulgaris ssp. vulgaris). Eur. J. Biochem. 31: 446–455.PubMedCrossRefGoogle Scholar
  43. 41.
    Pierpoint, W. S. 1969.O-Quinones formed in plant extracts. Their reaction with bovine serum albumin. Biochem. J. 112: 619–629.PubMedGoogle Scholar
  44. 42.
    Pierpoint, W. S. 1970. Formation and behaviour of o-quinones in some processes of agricultural importance. Rep. Rothamstead Exp. Station, Part II, pp. 199–218.Google Scholar
  45. 43.
    Pierpoint, W. S., R. J. Ireland, J. M. Carpenter. 1977.Modification of proteins during the oxidation of leaf phenols: reaction of potato virus X with chlorogeno- quinone. Phytochemistry16: 29–34.CrossRefGoogle Scholar
  46. 44.
    Ranjeva, R., A. M. Boudet, H. Harada, G. Marigo. 1975.Phenolic metabolism in petunia tissues. I. Characteristic responses of enzymes involved in different steps of polyphenol synthesis to different hormonal influences. Biochim. Biophys. Acta399: 23–30.Google Scholar
  47. 45.
    Ranjeva, R., G. Alibert, A. M. Boudet. 1977. Metaboliane des conposés phénoliques chez le petunia. V. Utilisation de la phénylalanine par les chloroplastes isolés. Plant Sci. Letters, in the press.Google Scholar
  48. 46.
    Ranjeva, R., G. Alibert, A. M. Boudet. 1977. Metabolisme des composés phénoliques chez le petunia. VI. Intervention des chloroplastes dans la biosynthese de la naringénine et de I’acide chlorogénique. Plant Sei. Letters, in the press.Google Scholar
  49. 47.
    Roberts, R. J., P. F. T. Vaughan. 1971.Hydroxylation of kaempferol, dihydrokaempferol and naringenin by a phenolase preparation from spinach beet. Phytochemistry10: 2649–2652.CrossRefGoogle Scholar
  50. 48.
    Scandalios, J. G. 1974.Isozymes in development and differentiation. Ann. Rev. Plant Physiol. 25: 225–258.CrossRefGoogle Scholar
  51. 49.
    Schill, L., H. Grisebach. 1973.Properties of a pheno-lase preparation fron cell suspension cultirres of parsley. Hoppe Seyler’s Z. physiol. Chan. 354: 1555–1562.Google Scholar
  52. 50.
    Schoenbein, C. F. 1855.Verhandl. naturwiss. Ges. Basel1: 339.Google Scholar
  53. 51.
    Shiman, R., M. Akino, S. Kaufinan. 1971.Solubilization and partial purification of tyrosinase hydroxylase from bovine adrenal medulla. J. Biol. Qiem. 246: 1330–1340.Google Scholar
  54. 52.
    Stafford, H. A. 1974. Possible raultienzyme complexes regulating the formation of C6-C3 phenolic compounds and lignins in higher plants. In Metabolism and Regulation of Secondary Plant Products (Ed.) V. C. Runeckles, E. E. Conn. Recent Adv. Phytochem. 8: 53–79.Google Scholar
  55. 53.
    Stafford, H. A. 1974.Activation of 4-hydroxycinnamate hydroxylase in extracts fron Sorghum. Plant Physiol. 54: 686–689.PubMedCrossRefGoogle Scholar
  56. 54.
    Stafford, H. A. 1976.Oiaracteristics of a 4-hydroxy-cinnamate hydroxylase purified from Sorghum leaves. Plant Physiol. 57: 320–324.PubMedCrossRefGoogle Scholar
  57. 55.
    Stafford, H. A., S. Dresler. 1972.4-Hydroxycinnamic acid hydroxylase and polyphenolase activities in Sorghum vulgare. Plant Physiol. 49: 590–595.PubMedCrossRefGoogle Scholar
  58. 56.
    Theorell, H. 1942.Crystalline peroxidase. Enzymo-logia10: 250–252.Google Scholar
  59. 57.
    Tocher, R. D., C. S. Tocher. 1972.DCPA decarboxylase in Cytisus scoparius. Phytochemistry11: 1661–1667.CrossRefGoogle Scholar
  60. 58.
    Trautner, E. M., E. A. H. Roberts. 1950.The chemical mechanism of the oxidative deanimation of amino-acids by catechol and polyphenolase. Aixst. J. Sci. Research3B: 356–380.Google Scholar
  61. 59.
    Van Kammen, A., D. Brouwer. 1964.Increase of poly-phenoloxidase activity by a local virus infection in uninoculated parts of leaves. Virology22: 9–14.CrossRefGoogle Scholar
  62. 60.
    Van Sumere, C. F., J. Albrecht, A. Dedonder, H. de Footer, I. Pe. 1975. Plant proteins and phenolics. In The Chemistry and Biochemistry of Plant Proteins. (Ed.) J. B. Harbome, C. F. Van Sumere Academic Press, London, pp. 211–264.Google Scholar
  63. 61.
    Vaughan, P. F. T., V. S. Butt. 1969.The hydroxylation of p-coumaric acid by an enzyme from leaves of spinach beet (Beta vulgaris L.). Biochem. J. 113: 109–115.PubMedGoogle Scholar
  64. 62.
    Vaughan, P. F. T., V. S. Butt. 1970.The action of o-dihydric phenols in the hydroxylation of £-coxjmaric acid by a phenolase fron leaves of spinach beet (Beta vulgaris L.). Biochon. J. 119: 89–94.Google Scholar
  65. 63.
    Vaughan, P. F. T., V. S. Butt. 1972.The expression of catechol oxidase activity during the hydroxylation of p-coumaric acid by spinach-beet phenolase. Biochon. J. 127: 641–647.Google Scholar
  66. 64.
    Vaughan, P. F. T., V. S. Butt, H. Grisebach, L. Schill. 1969.Ifydroxylation of flavonoids by a phenolase pre¬paration from leaves of spinach beet. Phytochemistry8: 1373–1378.CrossRefGoogle Scholar
  67. 65.
    Vaughan, P. F. T., R. Eason, J. Y. Paton, G. A. Ritchie. 1975.Molecular weight and amino acid conposition of purified spinach beet phenolase. Phytochemistry14: 2383–2386.CrossRefGoogle Scholar
  68. 66.
    Vaughan, P. F. T., R. J. Mclntyre. 1975.The action of hydrogen peroxide on the hydroxylation of p-coumaric acid by spinach-beet phenolase. Biochen. J. 151: 759–762.Google Scholar
  69. 67.
    Weston, T. J. 1969.The behaviour of peroxidase and polyphenol oxidase during the growth and senescence of tobacco leaves. J. exp. Bot. 20: 56–63.CrossRefGoogle Scholar
  70. 68.
    Wong, E., J. M. Wilson. 1976.Products of peroxidase-catalysed oxidation of 4,2,4’-trihydroxychalcone. Phytochemistry15: 1325–1332.CrossRefGoogle Scholar
  71. 69.
    Yamazaki, I., R. Nakajima, K. Miyoshi, R. Makino, M. Tamura, 1973. The fimctional relationship between horseradish peroxidase and other hemoproteins.InOxidases and Related Redox Systems (Ed.) T. E. King, H. S. Mason, M. Morrison University Park Press, Baltimore. pp. 407–419.Google Scholar
  72. 70.
    Yoshida, H. 1883. Chemistry of lacquer (Urushi).J. Chem. Soc. 43: 472–486.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1979

Authors and Affiliations

  • V. S. Butt
    • 1
  1. 1.Botany SchoolOxford UniversityEngland

Personalised recommendations