Advertisement

Metabolism of the Aromatic Amino Acids by Fungi

  • Chi-Kit Wat
  • G. H. N. Towers
Part of the Recent Advances in Phytochemistry book series (RAPT, volume 12)

Abstract

This review is concerned with the biochemical transformations of phenylalanine, tyrosine and tryptophan and the subsequent incorporation of the derived aromatic metabolites into pigments, antibiotics and other physiologically active compounds in fungi. There has been a considerable amount of new information published about these secondary metabolites since this topic was last reviewed159,166-168,185. The shikimate-chorismate pathway will not be discussed nor will the aromatic metabolites derived strictly through the polyketide or mevalonate pathways be included. latter topics have been reviewed recently101,170and the shikimate pathway is discussed in detail by Floss in this volume.

Keywords

Aspergillus Niger Cinnamic Acid Aromatic Amino Acid Phenylacetic Acid Protocatechuic Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aboutabl, E.S.A., A.E. Azzouny, K. Winter, M. Luckner. 1976. Stereochemical aspects of the conversion of cyclopeptine into dehydrocyclopeptine by cyclopeptine dehydrogenase fromPenicillium cyclopium, Phytochemistry 15:1925–1928CrossRefGoogle Scholar
  2. Achenbach, H., H. Grisebach. 1965. Zur Biogenese des Xanthocillins.Z. Naturforschg.20b: 137–140.Google Scholar
  3. Achenbach, H., W. Karl, W. Regel. 1972. Inhaltsstoffe des Rauschpfeffer, V. 11-Hydroxy-12-methoxy-dihydrokawain und 11,12-Dimethoxydihydrokawain, zwei neue Kawa- Lactone aus Rauschpfeffer (Piper methysticumForst.).Chem. Ber.105:2182–2187.CrossRefGoogle Scholar
  4. Achenbach, H., F. Konig. 1972. Zur Biogenese des Xanthocillins, III. Die Frage der biogenetisfjhen Gleichwertigkeit der beiden Xanthocillin - Hälften. Chem. Ber.105:784–793.CrossRefGoogle Scholar
  5. Albagnac, G. 1975. La decarboxylation des acides cinnamiques substitues par les levures. Ann. Technol, agric.24:133–141.Google Scholar
  6. Aldridge, D.O., S. Galt, D. Giles, W.B. Turner. 1971. Metabolites of Lasiodiplodia theobromae. J. Chem. Soc. (C):1623–1627.Google Scholar
  7. Allen, C.M. Jr. 1972. Biosynthesis of echinulin. Isoprenylation of cyclo-L-alany1-L-troptophanyl. Biochem. 21:2154–2160.Google Scholar
  8. Allport, D.O., J.D. Bu’Lock. 1960. Biosynthetic Pathways in Daldinia concentrica. J. Chem. Soc. 654–662.Google Scholar
  9. Asao, Y., T. Sakasai, T. Yoktsuka. 1967. Nippon Nogeikagaku Kaishi 41:434–441.CrossRefGoogle Scholar
  10. Bandoni, R.J., K. Moore, P.V. Subba Rao, G.H.N. Towers. 1968. Phenylalanine and tyrosine ammonia-lyase activity in some basidiomycetes. Phytochemistry 7:205–207.CrossRefGoogle Scholar
  11. Barbetta, M., G. Casnati, A. Ricca. 1967. Aspergilline. Rend. 1st. Lombardo Accad. Sei. Lett. A.101:75–99.Google Scholar
  12. Bartle, K.D., R.L. Edwards, D.W. Jones, I. Mir. 1967. Constituents of the higher fungi. Part VII. The Photodinierisation of hispidin analogues: a proton magnetic resonance study. J. Chem. Soc. (C):413–419.Google Scholar
  13. Bayne, H.G., Finkle, B.J., R.E. Lundin. 1976. Decarboxy-lative conversion of hydroxycinnainic acids to hydroxy- styrenes by Polyporus circinata. J. Gen. Microbiol.95:188–190.PubMedCrossRefGoogle Scholar
  14. Beaumont, P.C., R.L. Edwards, G.C. Elsworthy. 1968. Constituents of the higher fungi. Part VIII. The Blueing of Boletus species. Variegatic acid, a hydroxytetronic acid from Boletus species and a reassessment of the structure of boletol. J. Chem. Soc. (C):2968–2974.Google Scholar
  15. Begley, M.J., D.W. Knight, G. Pattenden. 1976. Structural revision for prenylated pulvinone metabolites from Aspergillus terreus. Tet. Lett. 131–132.Google Scholar
  16. Bell, A.A., R.D. Stipanovic, J.E. Puhalla. 1976. Pentaketide metabolites of Verticillium dahliae. Tetrahedron32:1353–1356.CrossRefGoogle Scholar
  17. Benedict, R.G., V. E. Tyler, Jr. 1962. Examination of mycelial cultures of Panaeolus species for tryptophan hydroxylase activity. Lloydia25:46–54.Google Scholar
  18. Beno, M.A., G.G. Christoph. 1976. X-ray crystal structure of cytochalasin H, a potent new (11) cytochalasin toxin. J.C.S. Chem. Comm. 344–345.Google Scholar
  19. Besl, H., A. Bresinsky, W. Steglich, K. Zipfel, 1973. Pilzipigmente.XVII. Über Gyrocyanin, das blauende Prinzip des Kornblumenrohrligs (Gyroporus cyanescens), und eine oxidative Ringnverengung des Atromentins. Chem. Ber.106:3223–3229.CrossRefGoogle Scholar
  20. Binder, M., J.R. Kiechel, Ch. Tamm. 1970. Zur Biogenese des Antibioticums Phomin. I. Teil: Die Grundbausteine. Helv.Chim. Acta53:1797–1812.PubMedCrossRefGoogle Scholar
  21. Bocks, S.M.1967. Fungal Metabolism I. The transformation of coumarin, o-coixmaric acid and transcinnamic acid by Aspergillus niger. Phytochemistry 6:127–130.CrossRefGoogle Scholar
  22. Bocks, S.M.1967. Fungal metabolism - III. The hydroxylation of anisole, phenoxyacetic acid, phenylacetic acid and benzoic acid by Aspergillus niger, Phytochemistry 6:785–789.CrossRefGoogle Scholar
  23. Brady, L.R., R.G. Benedict. 1972. Occurrence of bisnoryangonin in Pholiota squarroso-adiposa. J. Pharm. Sc.58:318.Google Scholar
  24. Brannon, D.R., J.A. Mabe, B.B. Molloy, W.A. Day. 1971. Biosynthesis of dithiadiketopiperazine antibiotics: Comparison of possible aromatic amino acid precursors. Biochem. Biophys. Res. Comm.43:588–593.PubMedCrossRefGoogle Scholar
  25. Bresinsky, A., H. Besl, W. Steglich. 1974. Gyroporin und Atromentisaure Aus Leccinum-aurantiacum Kulturen. Phytochemistry13:271–272.CrossRefGoogle Scholar
  26. Brewer, D., W.A. Jerram, D. Meiler, A. Taylor. 1970. The toxicity of cochliodinol, an antibiotic metabolite of Chaetomium spp. Can. J. Microbiol.16:433–439.PubMedCrossRefGoogle Scholar
  27. Brufani, M., W. Fedeli, F. Mazza, A. Gerhard, W. Keller-Schierlein. 1971. The structure of tryptanthrin. Ejcperientia27:1249–1250.CrossRefGoogle Scholar
  28. Buck, R.W. 1967. Psychedelic effect of Pholiota spectabilis. New Engl. J. Med.276:391–392.PubMedCrossRefGoogle Scholar
  29. Bu’Lock, J.D., P.R. Leeming, E.G. Smith. 1962. Pyrones. Part II. Hispidin, a new pigment and precursor of a fungus "lignin". J. Chem. Soc. 2085–2089.Google Scholar
  30. Bu’Lock, J.D., C. Leigh. 1975. Biosynthesis of gliotoxin. J.C.S. Chem. Comm. 628–629.Google Scholar
  31. Bu’Lock, J.D., A.P. Ryles. 1970. The biosynthesis of the fungal toxin gliotoxin; the origin of the "extra" hydrogens as established by heavy-isotope labelling and mass spectrometry. J.C.S. Chem. Comm. 1404–1406.Google Scholar
  32. Bu’Lock, J.D., J.L.S.T.H. Yuen. 1971. Oxygen requirements for secondary metabolism in Trichoderma viride and the effect of barbituarate. Phytochemistry10:1835–1836.CrossRefGoogle Scholar
  33. Cain, R.B., R.F. Bilton, J.A. Darrah. 1968. The Metabolism of aromatic acids by microorganisms. Metabolic pathways in the fungi. Biochem, J.108:797–828.Google Scholar
  34. Camm, E. L., G. H. N. Towers. 1977. In Progress in Phytochemistry4;169–188.Google Scholar
  35. Cardillo, R., C. Fuganti, D. Ghiringhelli, P. Grasselli. 1975. Stereochemical course of the α, ß-desaturation of L-tryptophan in the biosynthesis of cryptoe- chinulin A in Aspergillus amstelodami, J,C.S, Chem. Comm. 778–779.Google Scholar
  36. Casnati, G., R. Marchelli, A. Pochini.1974. Rearrangement of 3-alklyl-l-allylindoles: a model reaction for the biogenesis of echinulin-type compounds. J.C.S. Perkin 1:754–757.CrossRefGoogle Scholar
  37. Chandra, P., L. C. Vininv. 1968. Conversion of phenylalanone to tyrosine by microorganisms. Can, J. Microbiol.14:573–578.CrossRefGoogle Scholar
  38. Chen, S. L., H. H. Peppier. 1956. Conversion of cinnamaldehyde to styrene by a yeast mutant. J. Biol. Chem.221:101–106.PubMedGoogle Scholar
  39. Chilton, W., C. P. Hsu, W.J. Zdybak. 1974. Stizolobic and stizolobinic acids in Amanita pantherina. Phytochemistry13:1179–1181.CrossRefGoogle Scholar
  40. Clifford, D.R., J.K. Faulkner, J.R.L. Walker, D. Woodcock. 1969. Metabolism of cinnamic agid by Aspergillus niger. Phytochemistry S;549–552.Google Scholar
  41. Cross, B.E., R.H.B. Galt, J.R. Hanson, P.J. Curtis, J.F. Grove, A. Morrison. 1963. New metabolites of Gibberella fujikuroi. Part II. The Isolation of fourteen new metabolites. J. Chem, Soc. 2931.Google Scholar
  42. Crowden, R. K. 1967. Biosynthesis of the polyphenolic acid metabolites of Polyporous tumulosus Cooke. Can. J, Microbiol.13:181–197.CrossRefGoogle Scholar
  43. Curtis, P.J., D. Greatbanks, B. Hesp, A.F. Cameron, A.A. Freer. 1977. Sirodesmins A,B,C, and G, antiviral epipolythiopyiperazine-2,5-diones of fungal origin: X-ray analysis of sirodesmin A diacetate. J.C.S. Perkin I;180–181.CrossRefGoogle Scholar
  44. Davys, M., J.F. Bousquet, M. Barbier. 1976. Le tyrosol (p-hydroxyphényléthanol), inhibiteur de la germination isole du milieu de culture de Pyricularia oryzae, Phytopath, Z.85:176–178CrossRefGoogle Scholar
  45. Dossena, A., R. Marchelli, A. Pochini. 1974. New metabolites of Aspergillus amstelodami related to the biogenesis of neoechinulin. J.C.S, Cham. Comm. 771–772.Google Scholar
  46. Dossena, A., R. Marchelli, A. Pochini. 1975. Neoechinulin D, a new isoprenylated dehydrothryptophyl metabolite from Aspergillus amstelodami. Experientia51:1249.CrossRefGoogle Scholar
  47. DBpp, H., H. Musso. 1974. Eine chromatographische Analysenmethode für Betalainfarbstoffe in Pilzen und (höhern Pflanzen). Z. Naturforsch.29c:640–642.Google Scholar
  48. Edwards, R.L., M. Gill. 1973. Constituents of the Higher Fungi. Part XII. Identification of involutin as (-)-cis-5-(3,4-dihydroxyphenyl)-3,4- dihydroxy-2-(4-hydroxyphenyl)-cyclopent-2-enone and synthesis of (±)-cis-involutin trimethyl ether from isoxerocomic acid derivatives. J. Chem. Soc. Perkin I:1529–1537.CrossRefGoogle Scholar
  49. Edwards, R.L., M. Gill. 1973. Constituents of the higher fungi. Part XI7. 3’,4’ 4’-trihydroxy- pulvinone, thelephoric acid, and novel pyrandione and furannone pigments from Suillus grevillei (Klotsch) Sing. {Boletus elegans (Schum. per Fries)}. J.C.S. Perkin I:1921–1929.CrossRefGoogle Scholar
  50. Edwards, R.L., M. Gill. 1975. Constituents of the higher fungi. Part XV. 3-(3,4-dihydroxyphenyl)- 2,7,8-trihydroxydibenzofiiran-l,4-dione, a precursor of thelephoric acid from the fungus Suillus grevillei (Klotsch) Sing. {Boletus elegans (Schum. per Pries)}. J.C.S, Perkin I: 351–354.CrossRefGoogle Scholar
  51. Ehrlich, F., K.A. Jacobsen. 1911. Conversion of amino acids into hydroxy acids by means of microorganisms. Ber.44: 888–897.Google Scholar
  52. Ehrlich, F., K.A. Jacobsen. 1911. Conversion of amino acids into hydroxy acids by means of microorganisms. CA. 5:2254(1911).Google Scholar
  53. Ehrlich, F., P. Pistschimuka. 1912. Conversion of amines into alcohols by yeasts and mould fungi. Ber.45:1006–1012.Google Scholar
  54. Ehrlich, F., P. Pistschimuka. 1912. Conversion of amines into alcohols by yeasts and mould fungi CA 6:2446–2447 (1912).Google Scholar
  55. Ellis, B.E. 1976. Dopa ring-cleavage in the biogenesis of stizolobic acid in Mucuna deeringiana. Phytochemistry15:489–491.CrossRefGoogle Scholar
  56. Falanghe, H., P.A. Bobbio.1962. Identification of indigo produced in submerged culture of Agaricus compestris y mutant culture. Arch. Biochem. Biophys. 96:430–433.PubMedCrossRefGoogle Scholar
  57. Faudin, A.S., V. Macko. 1974. Identification of the self-inhibitor and some germination characteristics of peanut rust uredospores. Phytopath.64:990–992.CrossRefGoogle Scholar
  58. Faulkner, J.K., D. Woodcock. 1968. The metabolism of phenylacetic acid by Aspergillus niger. Phytochemistry 7:1741–1742.CrossRefGoogle Scholar
  59. Fenn, P., R.D. Durbin, J.E. Kuntz. 1977. Synthesis of tryptophol and o-acetyltryptophol from tryptophan by Ceratocystis fagacearum. Phytochemistry.16:899–901.CrossRefGoogle Scholar
  60. Fiasson, J-L., K. Gluchoff-Fiasson, W. Steglich. 1977. Über die Farb-und Fluoreszenstoffe des Grünblat- trieng Schwefelkopfes (Hypholoma fasiculare, Agaricales). Chem. Bar.110;1047–1057.CrossRefGoogle Scholar
  61. Fischer, F., O. Wiedemann. 1934. Biochemical hydrogenations. 1. Hydrogenation of unsaturated a-keto acids, aldehydes and alcohols by fermenting yeast. Ann.513:260–280.Google Scholar
  62. Fiussello, N., J.C. Scurti. 1972. Idrossi-indol derivati in Basidiomiceti.II. Psilocibina, Psilochina e 5-idrossi-indol derivati in carpofori di "Panaeolus" e generi affini. Allionia18:85–90.Google Scholar
  63. Framm, J., L. Nover, A.E. Azzouny, H. Richter, K. Winter, S. Werner, M. Luckner. 1973. Cyclopeptin und Dehydrocyclopeptin. Eur. J. Biocheml37:78–85.CrossRefGoogle Scholar
  64. French, C.J., C.P. Vance, G.H.N. Towers. 1976. Conversion of p-coumaric acid to p-hydroxybenzoic acid by cell-free extracts of potato tubers and Polyporus hispidus. Photochemistry15:564–566.CrossRefGoogle Scholar
  65. Gatti, G. 1976. Structure determination of two extractives from Aspergillus ajnstelodajni by nuclear magnetic resonance spectroscopy. Chem. Comm: 435–436.Google Scholar
  66. Glombitza, K-W. 1967. ß-(Indolyl-3)-äthylacetate, ein neues StoffWechselprodukt im Tryptophanstoffwechsel der Hefen. Jaturwissen. 54Google Scholar
  67. Glombitza, K-W., T. Hartmann. 1966. Der Tryptphanabbau bei Endomycopsis vernalis und anderen Hefen. Planta.69:135–149.CrossRefGoogle Scholar
  68. Gluchoff-Tiasson, K., J. Bernillon. 1977. Lespigments de Pholiota flaimans (Fr.) Kummer (Basidiomycte, Agaricale); identification de quatre derives de l’hispodine. C.R. Acad. Sc. Paris.204:385–388.Google Scholar
  69. Golding, B.T., R.W. Richards, Z. Vanek. 1975. New metabolites of Aspergillus terreus: 3-hydroxy-2,5- bis-(p-hydrQxy-phenyl)penta-2,4-dien-4-olide and derivatives. J.C.5. Perkin I: 1961–1963.CrossRefGoogle Scholar
  70. Gripenberg, J. 1974. Fungus pigments.XIII. Hydnuferrugin: a novel type of a 2,5-diphenylbenzoquinone-derived pigment. Tet. Lett. 619–622.Google Scholar
  71. Gross, G.G., M.H. Zenk. 1969. Reduktion aromatischer Säu ren zu Aldehyden und Alkoholen im zellfrein System. 2. Reinigung und Eigenschaften von Aryl-Alkohol: NADP-Oxidoreduktase aus Neurospora crassa, Eur. J. Biochem.8:420–425.PubMedCrossRefGoogle Scholar
  72. Gross, G.G., M.H. Zenk. 1969. Reduktion aromatischer Säuren zu Aldehyden und Alkoholen im zellfreisen System. 1. Reiningung und Eigenschaften von Aryl- AldehydrNADP-Oxidoreduktase aus Neurospora crassa. Eur. J. Biochem.8:413–419.PubMedCrossRefGoogle Scholar
  73. Hamasaki, T., K. Nagayama, Y. Hatsuda. 1976. A new metabolite, L-alanyl-L-tryptaphan anhydride from Aspergillus chevalieri. Arg, Biol, Chem.40:2487.CrossRefGoogle Scholar
  74. Hansen, I.L., M.A. Crawford. 1968. Bacterial degradation of the aromatic acid side chain. Biochem. Pharmacol.17:338–342.CrossRefGoogle Scholar
  75. Hatfield, G.M., L.R. Brady. 1971. Occurrence of bis-noryangonin and hispidin in Gymnopilus species. Lloydia34:260–263.Google Scholar
  76. Hatfield, G.M., L.R. Brady. 1973. Biosynthesis of hispidin in cultures of Polyporus schweinitzii Lloydia56:59–65.Google Scholar
  77. Hausen, D., H.B. Loosli, P. Niklaus. 1972. Isolierung von 11a, 11’a-dihydroxychaetocin aus Verticillium tenerum. Helv. Chim. Acta55:2185–2187.Google Scholar
  78. Herzog, R.O., O. Ripke. 1908. Conversion of cinnamic acid into styrene by molds. A. Physiol. Chem.57:43–45.CrossRefGoogle Scholar
  79. Hess, S.L., P.J. Allen, D. Nelson, H. Lester.1975. Mode of action of methyl cis-ferulate, the self- inhibitor of stem rust uredospore germination. Physiol. Plant Path, 5:107–112.CrossRefGoogle Scholar
  80. Hilber, O. 1968. Indole as the main component of odor of some Tricholoma species and Lepiota bucknallii. Z. Pilzk.34:153–158. CA 72:727d (1970).Google Scholar
  81. Ishida, M., T. Hamasaki, Y. Hatsuda. 1975. The structure of two new metabolites, emerin and emeri- cellin, from Aspergillus nidulans. Agr, Biol. Chem. 39:2181–2184.Google Scholar
  82. Isono, M. 1953. Oxidative metabolism of phenylacetic acid by Penicillium chrysogenum Q-176. III. Intermediary production of 2-hydroicphenylacetic acid on the phenylacetic acid metabolism. 1. Isolation and identification of 2-hydroxyphenylacetic acid. J. Agr. Chem. Soc. (Japan)27:255–259.Google Scholar
  83. Jamaluddin, M., P.W. Subba Rao, C.S. Vaidyanathan. 1970. Involvement of the protocatechuate pathway in the metabolism of mandelic acid by Aspergillus niger. J. Bact. 786–793.Google Scholar
  84. Jerram, W.A., A.G. Mclnnes, W.S.G. Maass, D.G. Smith, A. Taylor, J.A. Walter. 1975. The chemistry of cochliodinol, a metabolite of Chaetomium spp. Can. J. Chem.53:727–737.CrossRefGoogle Scholar
  85. Jewers, K., J.B. Davis, J. Dougan, A.H. Manchanda, G. Blunden, A. Kyi, S. Wetchapinan. 1972. Goniothalamin and its distribution in four Goniothalamus species. PhytochemistryII:2025–2030.CrossRefGoogle Scholar
  86. Johns, N., G.W. Kirby, J.D. Bu’Lock, A.P. Ryles. 1975. Stereospecific exchange of a ß-methylene proton in phenylalanine preceding biosynthetic incorporation into gliotoxin. J.C.S. Perkin I: 383–386.CrossRefGoogle Scholar
  87. Kalghatgi, K.K., AM.D. Nambudiri, J.Y. Bhat, P.V. Stibba Rao. 1974. Degradation of L-phenylalanine by Rhizoctonia Solani. Ind. J. Biochem. and Biophys. 11:116–118.Google Scholar
  88. Kalghatgi, K.K., P.V. Subba Rao. 1975. Microbial L-Phenylalanine ammonia-lyase. Purification, subiinit structure and kinetic properties of the enzyme from Rhizoctonia solani. Biochem. J.149:65.PubMedGoogle Scholar
  89. Kalghatgi, K.K., P.V. Subba Rao. 1976. Regulation of L-phenylalanine ammonia-lyase from Rhizoctonia solani. J. Bact.126:568–578.PubMedGoogle Scholar
  90. Kimura, Y., M. Takido, K. Nakano, K. Takishita. 1966. Constituents of Alpinia plants. X. On the constituents of the rhizomata of A. speciosa and A. kumatahe. Yakugaku Zasshi86:1184–1187.PubMedGoogle Scholar
  91. Kirk, T.K., L.F. Lorenz, M.J. Larsen. 1975. Partial characterization of a phenolic pigment from sporocarps of Phellinus igniarius. Photochemistry14:281–284.CrossRefGoogle Scholar
  92. Kishore, G., M. Sugumaran, C.S. Vaidyanathan. 1976. Metabolism of DL-(+)-phenylalanine by Aspergillus niger. J. Bact.120:182–191.Google Scholar
  93. Kishore, G., C.S. Vaidyanathan. 1976. Purification and properties of D-amino acid oxidase of Aspergillus niger. Ind. J. Biochem. Biophys.13:216–222.Google Scholar
  94. Klaar, M., W. Steglich. 1977. Pilzpigmente, XXVII. Isolierung von Hispidin und 3,14’-Bihispidinyl aus Phellinus pomaceus (Poriales). Chem, Ber.1219:1058–1062.CrossRefGoogle Scholar
  95. Klaar, M., W. Steglich. 1977. Hymenochinon, der rote Farbstoff von Hymenochaete jnougeotii(Vorlales). Chem. Ber.110:1063–1068.CrossRefGoogle Scholar
  96. Knight, D.W., G. Pattenden. 1976. Specificities of enzymatic prenylation and ehr emanation in the biosynthesis of aspulvinone pigments in Aspergillus terreus. J.C.S. Chem. Comm. 634–637.Google Scholar
  97. Kretizaler, F., K. Hahlbrock. 1975. Enzymatic synthesis of aromatic compounds in higher plants. Formation of bisnoryangonin (4-hydroxy-6{4-hydroxystyryl}2- pyrone) from p-Coumaroyl-CoA and malonyl-CoA. Arch. Biochem. Biophys.169:84–90.CrossRefGoogle Scholar
  98. Leal, J.A., V.G. Lilly, M.E. Gallegly. 1968. The production of indolelactic acid from L-tryptophan by species of Phytophthora, Can. J. Microbiol.14:595–600.CrossRefGoogle Scholar
  99. Lingappa, B.T., M. Prasad, Y. Kingappa, D.F. Hunt, K. Biemann. 1969. Phenyl alcohol and tryptophol autoantibiotics produced by the fungus Candida albicans. Science163:192–193.PubMedCrossRefGoogle Scholar
  100. List, P.H., B. Freund. 1968. Geruchsstoffe der Stinkmorchel. Phallus impudicus L. Planta Medica Supplement: 123–131.Google Scholar
  101. Luckner, M. 1963. Über Bildung und Stoffwechsel von α-N-acetyl-D-tryptophan und α-N-acetyl-D-kynurenin bie Penicillium viridicatum Westling. Mikrobio. 3: 93–100.CrossRefGoogle Scholar
  102. Luckner, M. 1967. Zur Bildung Ton Chinolinalkaloiden in Pflanzen. Eur. J. Biochem.2: 74–78PubMedCrossRefGoogle Scholar
  103. McCorkindale, N.J. 1976. The biosynthesis of terpenes and steroids. In The Filamentous Fungi, vol. II (Ed.) J.E. Smith and D.K. Berry, Edward Arnold (Publishers) Ltd. London, pp. 369–422.Google Scholar
  104. MacDonald, J. C., G. P. Slater. 1966. The utilization of tryptophan in the biosynthesis of echinulin. Can. J. Microbiol.12:455–463.PubMedCrossRefGoogle Scholar
  105. MacDonald, J.C., G.P. Slater. 1975. Biosynthesis of gliotoxin and mycelianamide. Can. J. Biochem.53:475–478.PubMedCrossRefGoogle Scholar
  106. McGrath, R.M., P.S. Steyn. 1976. Biosynthesis of cyclopiazonic acids in Penicillium cyclopium: The isolation of dimethylallylpyrophosphatercyclo- acetoacetyltryptophanyl dimethylallyltransferase. Bioorganic Chemistry4:11–23.CrossRefGoogle Scholar
  107. Mclnnes, A.G., D.G. Smith, J.A. Walter, L.C. Vining, J.L.C. Wright. 1974. New techniques in bio- synthetic studies using 13C nuclear magnetic resonance spectroscopy. The biosynthesis of tenellin enriched from singly and doubly labelled precursors. J.C.S. Chem, Comm. 282–284.Google Scholar
  108. Mclnnes, A.G., D.C. Smith, C.K. Wat, L.C. Vining, J.L.C. Wright. 1974. Tenulin and bassianin, metabolites of Beauveria species. Structure elucidation with and doubly 13C-enrlched compounds using 13C nnclear magnetic resonance spectroscopy. J.C.S. Chem. Comm. 281–284.Google Scholar
  109. Maass, W. S. G.1970. Pulyinamide and possible bio-synthetic relationships with pulyinic acid. Phytochemistry 9:2477–2481.CrossRefGoogle Scholar
  110. Maass, W.S.G., G.H.N. Towers, A.C. Neish. 1964. riechtenstoffe: I. Untersuchungen zvx Biogeneses des Ptilvinsaiireanhydxids. Bar. Deut. Cot. Gesell. 77:157–161.Google Scholar
  111. Macko, V., R.C. Staples. 1973. The Torrey Symposium on current aspects of fungal development. Y. Regulation of nredospore germination and germ tube development. Bull. Tor. Bot. Club100:223–229.CrossRefGoogle Scholar
  112. Manitto, P., P. Gramatica, B.M. Ranzi. 1975. Stereochemistry of the decarboxylation of phenolic cinnamic acids by Saccharomyces cerevisiae. J.C.S. Chem. Comm. 442–443.Google Scholar
  113. Marchelli, R., A. Dossena, G. Casnati. 1975. Bio synthesis of neoechinulin by Aspergillus amstelodaiai from cycIo-L-(U-14C) alanyl-L-(5,7–3H2) tryptophyl. J.C.S. Chem. Comm. 779–780.Google Scholar
  114. Marchelli, R., L.C. Vining. 1973. Biosynthesis of flavonoid and terphenyl metabolites by the fungus Aspergillus Candidus. J.C.S. Chem. Comm. 555–556.Google Scholar
  115. Marchelli, R., L.C. Vining. 1973. The biosyiithetic origin of chlorflavonin, a flavonoid antibiotic from Aspergillus Candidus. J. Biochem..52:1624–1629.Google Scholar
  116. Marchelli, R., L.C. Vining. 1975. Terphenyllin, a novel p-terphenyl metabolite from Aspergillus Candidus. J. AntibiotiGS 28;328–331.CrossRefGoogle Scholar
  117. Meiler, D., A. Taylor. 1971. The effect of cochliodinol, a metabolite of Chaetomium cochliodas on tfie respiration of microspores of Fusarium oxus-porum, Can, J. Microbiol,17:83–86.CrossRefGoogle Scholar
  118. Meyer, H.J. 1967. Pharmacology of kava. In Ethno-pharmacologic search of psychoactive drugs. (Ed.) Effron, D.H. Public Health Service Publication No. 1645. U.S. Government Printing Office, Washington, D.C. pp. 133–140.Google Scholar
  119. Meyer, H.J., R. Kretzchmar. 1966. Kawa-pyrone: eine neuartige substanzgruppe zentraler Muskelrelaxation vom T3rpdes Mepfienesins.. Klin, Wochschr,44:902–903.CrossRefGoogle Scholar
  120. Miles, P.G., H. Lund, J.R. Raper. 1956. The identification of indigo as a pigment produced by/a mutant culture of Schizophyllum commune. Arch, Biochem, Biophys,62:1–5.CrossRefGoogle Scholar
  121. Moore, K., P.V. Subba Rao, G.H.N. Towers. 1968. Degradation of phenylalanine and tyrosine by Sprobolomyces roseus, Biochem, J.106:507–514.Google Scholar
  122. Moore, K., G.H.N. Towers. 1967. Degradation of aromatic amino acids by fungi. 1. Fate of L-phenylalanine in Schizophyllum commune. Can. J, Biochem,45:1659–1665.CrossRefGoogle Scholar
  123. Mors, W.B., M.T. Magalhaes, O.A. Lima, A.M. Bittencourt, O.R. Gottlieb. 1962. Chemistry of the genus Aniba, XI. Isolation and synthesis of 11-methoxy-yangonin and of 5,6-dehydromethysticin. Anais. Assoc. Brasil. Quim.21:7–12.Google Scholar
  124. Münzner, R., E. Mntschler, M. Rummel. 1967. Über die mtkrobtologlsche imijpndlung N-haltlger substrate. 1. Hittetlung: über die mikrobiologische Acetylierung von Aminen durch Cordyceps militaris, Planta Medica15:97–103.PubMedCrossRefGoogle Scholar
  125. Nagarajan, R., N. Neuss, M.M. Marsh. 1968. Aranotin and related metabolites. III. Configuration and conformation of acetylaranotin. J. Amer, Chem, Soc.90:6518–6519.CrossRefGoogle Scholar
  126. Nagasawa, H. ,A. Isogai, A. Suzuki, S. Tamura. 1976. Structures of isoechinulin A,B and C, new indole metabolites from Aspergillus ruber. Tet, Lett. 1601–1604.Google Scholar
  127. Nambudiri, A.M.D., C.P. Vance, G.H.N. Towers. 1973. Effect of light on enzyme of phenylpropanoid metabolism and hispidin biosynthesis in Polyporus hispidus. Biochem. J.154:891–897.Google Scholar
  128. Narayanan, T.K., G. Ramanada Rao. 1974. Production of phenethylalcohol and 2-phenyllactic acid in Candida species. Biochem. Biophys. Res. Comm.50:728–735.CrossRefGoogle Scholar
  129. Narayanan, T.K., G. Ramananda Rao. 1976. Production of (4-hydroxyphenyl)ethanol and ß-(4-hydroxyphenyl) lactic acid by Canadia species. Can. J. Microbiol.22:384–389.PubMedCrossRefGoogle Scholar
  130. Ogata, K., K. Uchiyama, H. Yamada, T. Tochikura. 1967. Metabolism of aromatic amino acid in microorganism. II. Properties of phenylalanine ammonia-lyase of Rhodotorula. Agr. Biol. Chem. (Tokyo)51:600–606.CrossRefGoogle Scholar
  131. Ohba, T., H. Muraami, S. Hara. 1971. Identification of L-dopa and protocatechuic acid as main precursor of pigment of brown rice-koji. Agr. Biol. Chem.55:674–681.CrossRefGoogle Scholar
  132. Ohtsubo, K., T. Hariuchi, Y. Hatanaka, M. Saito. 1976. Hepato- and cardiotoxicity of xanthoascin, a new metabolite of A. Candidus Link, to mice. Jap. J. Exp. Med.46:277–287.PubMedGoogle Scholar
  133. Parkhurst, J.R., D.S. Hodgins. 1971. Phenylalanine and tyrosine ammonia-lyase activity in Sporobolomyces pararoseus. Phytochemistry10:2997–3000.CrossRefGoogle Scholar
  134. Perrin, P.W., G.H.N. Towers. 1973. Metabolism of aromatic acids by Polyporus hispidus, Phytochemistry12:583–587.CrossRefGoogle Scholar
  135. Perrin, P.W., G.H.N. Towers. 1973. Hispidin bio synthesis in cultures of Polyporus hispidus, Phytochemistry12:589–592.CrossRefGoogle Scholar
  136. Piattelli, M., E. Fattorusso, R.A. Nicolaus, S. Magno. 1965. The structure of melanins and melanogenesis. V. Ustilagomelanin. Tetrahedron21:3229–3236.CrossRefGoogle Scholar
  137. Power, D.M., G.H.N. Towers, A.C. Neish. 1965. Biosynthesis of phenolic acids by certain wood- destroying basidiomycetes. Can, J. Biochem.43: 1397–1407.CrossRefGoogle Scholar
  138. Premkimiar, R., P.V. Subba Rao, N.S. Sreeleela, C.S. Vaidyanathan. 1969. m-Hydroxybenzoic acid 4-hydroxylase from Aspergillus niger. Can, J. Biochem,47:825–827.CrossRefGoogle Scholar
  139. Pridham, J.B., S. Woodhead. 1974. Multimolecular forms of phenylalanine amonia-lyase in Alternaria, Biochem. Soc. Trans, 2:1070–1072.Google Scholar
  140. Pridham, J.B., S. Woodhead. 1977. The biosynthesis of melanin in Alternaria, Phytochemistry16:903–906.CrossRefGoogle Scholar
  141. Przybylska, M., E.M. Gopalakrishna, A. Taylor, S. Safe, 1973. X-ray crystaliographic determination of the stereochemistry of the tetrathio-bridge in sporidesmin G. J,C,S, Chem, Comm. 554–555.Google Scholar
  142. Quilico, A., C. Cardani. 1960, Sulla diffusione dell’ echinulina nelle muffe del gruppo dello Aspergillus glaucus, Atti, Accad, Nazi, Lincei, Rend, Classe Sei, Fis, Mat, Nat, 9:220–228.Google Scholar
  143. Reddy, M.N., A.S. Rao, K.N. Rao. 1975. Production of phenolic compounds by Rhizoctonia, Trans, Br, Mycol. Soc,64:146–148.CrossRefGoogle Scholar
  144. Read, G., L.C. Vining, R.H. HaBkins. 1962. Biogenetic studies on volucrisporin. Can. J. Chem,40:2357–2361.CrossRefGoogle Scholar
  145. Repke, D.B., D.T. Leslie. 1977. Baeocystin in Psilocybe send lanceata. J. Pharm. Sei, 66:113–114.Google Scholar
  146. Rona, E. 1914. Reduction of cinnamic aldehyde by yeast. Fermentation of benzylpyroracemic acid. Biochem. Z.67:137–142.Google Scholar
  147. Schindler, F., H. Zähner. 1971. Tryptanthrin, ein von Tryptophan abzuleitendes Antibioticum aus Candida lipolytica. Arch. Mikrobiol. 79:187–203.Google Scholar
  148. Schuytema, E.G., M.P. Hargie, I. Merits, J.R. Schenck, D.J. Siehr, M.S. Smith, E.L. Varner. 1966. Isolation, characterization, and growth of Basi- diomycetes. Biotech. Bioeng. 8:215–216.Google Scholar
  149. Siehr, D.J. 1961. The formation of oxindole acetic acid from indoles by a Basidiomycete. J. Amer. Chem. Soc.53:2401–2402.CrossRefGoogle Scholar
  150. Siehr, D.J., C.K. Chang, H.L. Cheng. 1969. The transformation of tryptamine and D-tryptophan by Basidiomycetes in submerged culture. Phytochemistry5:397–400.CrossRefGoogle Scholar
  151. Sinha, U. 1967. Aromatic amino acid bios3nithesis and p-fluorophenylalanine resistance in Asperigillus nidulans. Genet. Res. Camb. 10:261–272.Google Scholar
  152. Smith, T.A. 1977. Tryptamine and related compounds in plants. Phytochemistry16:171–175.CrossRefGoogle Scholar
  153. Smith, T.A. 1977. Phenethylamine and related compounds in plants. Phytochemistry16:9–18.CrossRefGoogle Scholar
  154. Steglich, W., H. Basl, A. Prox. 1972. Zur Struktur der Grevilline, neuartiger Pigmente aus dem Goldrohrling, Suillus grevillei (Boletaceae). Tet. Lett. 4895–4898.Google Scholar
  155. Steglich, W., F. Esser. 1973. L-3,4-Dihydorxyphenylalanin aus Strobilomyces floccopus. Phyto- chemistry12;1817.Google Scholar
  156. Steglich, W., R. Preuss. 1975. L-3,4-Dihydroxyphenylalanine from carpophores of Hyjrocybe conica and H. ovina, Phytochemistry14:1119.CrossRefGoogle Scholar
  157. Stipanovic R.D., H.W. Schroeder. 1976. Preechinulin, a metabolite of Aspergillus chevalieri. Trans. Br. Mycol. Soc.66:178–179.CrossRefGoogle Scholar
  158. Stoessl, A. 1969. 8-Hydroxy-6-methoxy-3-methylisocoumarin and other metabolites of Ceratocystis fimbriata. Biochem. Biophys. Res. Comm.55:186–191.CrossRefGoogle Scholar
  159. Struntz, G.M., M. Kakushima, M.A. Stillwell. 1975. An epitetrathiodioxopiperazine with 3S, 6S configuration from Hyalodendron sp. Can. J. Chem.Google Scholar
  160. Subba Rao, P.V., K. Moore, G.H.N. Towers. 1967. Degradation of aromatic amino acids by fungi. II. Purification and properties of phenylalanine ammonia- lyase from Ustilago hordei. Can. J. Biochem.45: 1863–1872.Google Scholar
  161. Subba Rao, P.V., A.M.D. Nambudiri, J.V. Bhat. 1971. Microbial degradation of phenylpropanoid compounds. J. Sei. Ind. Res.30:663–679.Google Scholar
  162. Sugumaran, M., M. Ramanarayanan, C.S. Vaidyanathan. 1973. Involvement of protocatechuic acid in the metabolism of phenylacetic acid by Aspergillus niger. Fehs Letters29:69–72.CrossRefGoogle Scholar
  163. Subba Rao, P.V., B. Fritig, J.R. Vose, G.H.N. Towers. 1971. An aromatic 3,4-oxygenase from Tilletiopsis washingtonenis - oxidation of 3,4-dihydroxypheny- lacetic acid to ß-carboxymethylmuconolactone. Phytochemistry10:51–56.CrossRefGoogle Scholar
  164. Takahashi, C., S. Sekita, K. Yoshihira, S. Natori. 1976. The structures of toxic metabolites of Aspergillus Candidus. II. The compound B (xanthoascin),a hepato- and cardio-toxic xantho- cillin analog. Chem, Pharm. Bull.24:2317–2321.CrossRefGoogle Scholar
  165. Takahashi, C., K. Yoshihira, S. Natori, M. Umeda. 1976. The structure of toxic metabolites of Aspergillus Candidus. I. The compounds A and E, cytotoxic 2-terphenyls. Chem. Pharm. Bull.24:613–620.PubMedCrossRefGoogle Scholar
  166. Thomson, R.H. 1974. The pigments of reddish hair and feathers. Angew. Chem. Internat. Edit,13:305–312.CrossRefGoogle Scholar
  167. Toms, A., J.M. Wood.1970. The degradation of transferulic acid by Pseudomonas acidovorans. Biochemistry 9:337–343.PubMedCrossRefGoogle Scholar
  168. Towers, G.H.N. 1969. Metabolism of cinnamic acid and its derivatives in Basidiomycetes. In Perspectives in Phytochemistry. (Ed.) J.B. Harbome and T. Swain, Academic Press, N.Y. pp. 179–191.Google Scholar
  169. Towers, G.H.N. 1976. Secondary metabolites derived through the shikimate-chorismate pathway. In The Filamentous Fungi, vol. II. (Ed.) J.E. Smith and D.R. Berry, Edward Arnold (Publishers) Ltd. London, pp. 461–474.Google Scholar
  170. Towers, G.H.N., P.V. Subba Rao. 1972. Degradative metabolism of phenylalanine, tyrosine and DOPA. Recent Adv. Phytochemistry 4:1–43.Google Scholar
  171. Towers, G.H.N., C.P. Vance and A.M.D. Nambudiri. 1974. Photoregulation of phenylpropanoid and styrylpyrone biosynthesis in Polyporus hispidus. Recent Adv. in Phytochemistry5:81–94.Google Scholar
  172. Turner, W.B. 1976. Polyketides and related metabolites. In The Filamentous Fungi, vol. II.(Ed.) J.E. Smith and D.R. Berry, Edward Arnold (Publishers) Ltd. London, pp. 445–459.Google Scholar
  173. Uchiyama, K., K. Kawaguchi, T. Tochikura, K. Ogata, 1969. Metabolism of aromatic amino acids in microorganisms. Part III. Metabolism of cinnamic acid in Rhodotorula, Agr. Biol. Chem,33:755–763.CrossRefGoogle Scholar
  174. Uemura, T. 1937. The decomposition of amino acids by Aspergillus oryzae. II. Production of phenylpyruvic acid from L-phenylalanine. J. Agr. Chem. Soc. (Japan) 15:1153–1158.Google Scholar
  175. Uemura, T. 1939. Decomposition of amino acids by Aspergillus oryzae III. J. Agr. Chem. Soc. (Japan)15:353–358.Google Scholar
  176. Uemura, S. 1944. Studies on the decomposition of L-amino acids by microbes I. Decomposition of L-phenylalanine by Hypomycetales. J. Agr. Chem. Soc. (Japan)20:231–234.Google Scholar
  177. Uemura, S. 1944. Studies on the decomposition of L-amino acids by microbes. II. Decomposition of L-phenylalanine and L-leucine by yeasts and formation of tyrosol from L-tyrosine by sake and beer yeasts. J. Agr. Chem. Soc. (Japan)20:295–303.Google Scholar
  178. Ueno, T., F. Yoshizako, A. Nishimura.1973. The formation of homogentisic acid from phenylacetic acid by an Aspergillus sp. Can. J. Microbiol. 19:393–395.PubMedCrossRefGoogle Scholar
  179. Vance, C.P., A.M.D. Nambudiri, C.K. Wat, G.H.N. Towers. 1975. Isolation and properties of hydroxycinnamate: CoA ligase from Polyporus hispidus. Phytochemistry14:967–969.CrossRefGoogle Scholar
  180. Vance, C.P., R.J. Bandoni, G.H.N. Towers. 1975. Further observations of phenylalanine ammonia- lyase in fungi. Phytochemistry 14:1513–1514.CrossRefGoogle Scholar
  181. van Sumere, C.F., C. van Sumere-de Preter, L.C. Vining, G.A. Ledingham. 1957. Coumarins and phenolic acids in the uredospores of wheat stem rust. Can. J. Microbiol.3:847–862.CrossRefGoogle Scholar
  182. van Sumere, C.F. 1960. Germination inhibitors in plant material. In Phenolics in Plants in Health and Disease. (Ed.) J.B. Pridham Pergamon Press, pp. 25–34.Google Scholar
  183. Von Ardenne, R., H. Dopp, H. Musso, W. Steglich. 1974. Uber da Vorkommen von Muscaflavin bei Hygrocyben (Agaricales) und seine Dihydroazepin-Struktur. Z. Naturforsch.29c:637–639.Google Scholar
  184. Wat, C.K. 1973. Microbial quinones. In Handbook of Microbiology, vol. III,(Ed.) A.I. Laskin, and H.A. Lechevalier. C.R.C. Press. Inc. Cleveland. pp. 195–196.Google Scholar
  185. Wat, C.K., G.H.N. Towers. 1975. Phenolic o-methyl transferase from Lentinus lepideus (Basidiomycete). Phytochemistry14:663–666.CrossRefGoogle Scholar
  186. Wat, C.K., G.H.N. Towers. 1977. Production of methylated phenolic acids by species of Lentinus (Basidiomycetes). Phytochemistry16:290–291.CrossRefGoogle Scholar
  187. Wright, J.L.C., L.C. Vining. 1976. Secondary metabolites derived from non-aromatic amino acids. In The Filamentous Fungi, vol. II. (Ed.) J.E. Smith and D.R. Berry, Edward Arnold (Publications) Ltd. London, pp. 475–502.Google Scholar
  188. Yamamoto, Y., K.-I. Nishimura, N. Kiriyama. 1976. Studies on the metabolic products of Aspergillus terreus. I. Metabolites of the strain IFO 6123. Chem. Pharm. Bull.24:1853–1859.CrossRefGoogle Scholar
  189. Yuasa, K., K. Ishizuka, S. Kaburaki, J. Sakasai. 1975. Metabolism of phenylalanine in Aspergillus sojae. Agr. Biol. Chem.39:2199–2206.CrossRefGoogle Scholar
  190. Yuasa, K., K. Ishizuka, S. Kaburaki, T. Sakasai. 1976. Metabolism of phenylalanine in Saccharamyces rouxii. Agr. Biol. Chem.40:1679–1685.CrossRefGoogle Scholar
  191. Zenk, M.H., G.G. Gross. 1965. Reduction of veratric acid to veratraldehyde and veratrylalcohol by cell- free extracts of Polystictus versicolor. Z. Pflanzenphysiol.53:356–362.Google Scholar
  192. Zenk, M.H., H. Scherf. 1964, Verbreitung der D-Tryptophan-Kenjugations Mechanismen im Pflazenreich.Planta 62:350–354.CrossRefGoogle Scholar
  193. Zenk, M.H., J.H. Schmitt. 1965. Preparation and properties of acetyl CoA, D-amino acid a-Nacetyltransferase of yeast.Biochem. Z.342:54–65.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1979

Authors and Affiliations

  • Chi-Kit Wat
    • 1
  • G. H. N. Towers
    • 1
  1. 1.Botany DepartmentUniversity of British ColumbiaVancouverCanada

Personalised recommendations