Metabolism and Degradation of Phenolic Compounds in Plants

  • W. Barz
  • W. Hoesel
Part of the Recent Advances in Phytochemistry book series (RAPT, volume 12)


This chapter describes some recent aspects of the complex metabolism and degradation of phenolic constituents in higher plants. The concept behind this field of research is the assumption that phenolic plant constituents are not metabolically inactive storage products simply accumulating during the whole life of a plant, but are subject to relatively rapid turnover and degradation. This assumption is in contrast to previous ideas63, 76, 94and is based on a wide variety of experimental data3, 5, 6, 7, 26, 77, 94. These involve observations that various phenols or flavonoids found in seeds or young seedlings disappear completely upon germination3, 5, 36, 94. Certain phases of intensive growth are accompanied by substantial qualitative and/or quantitative changes in the spectrum of phenolics and these can only usually be interpreted by assuming catabolic processes to be involved. Various tracer studies5, 26have established the fact that both synthesis and turnover occur and that they occur simultaneously in the same plant. Phenol metabolism must be regarded, therefore, as a dynamic system involving steady-state concentrations of the various end products.


Phenolic Compound Benzoic Acid Cell Suspension Culture Plant Cell Culture Cicer Arietinum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Barz, W. and Ch. Adamek. 1970. Ueber den Einfluss von Licht auf den Umsatz der Isoflavone Formonetin und Biochanin A. inCircer arietinum. Planta (berl.)90: 191–202.Google Scholar
  2. 2.
    Barz, W. and W. Hosel. 1971. Ueber den Umsatz von Flavonolenund Isoflavonen inCircer arietinum. Phytochemistry10: 335–41.CrossRefGoogle Scholar
  3. 3.
    Barz, W. 1975. Abbau von Flavonoiden und Iso flavonoidenein Ueberblick. Ber. Deutch. Bot. Ges.88: 71–81.Google Scholar
  4. 4.
    Barz, W. 1975. Abbau von aromatischen und heterocyclischen Pflanzeninhaltsstoffen durch Zellsuspensionskulturen. Planta Medica, Supplement 117–133.Google Scholar
  5. 5.
    Barz, W. and W. Hösel. 1975. Flavonoid metabolism. In: The Flavonoids. (Eds.) J. B. Harborne, T.J. Mabry and H. Mabry. Chapman and Hall, London, Chapter 17.Google Scholar
  6. 6.
    Barz, W. 1977. Degradation of polyphenols in plants and plant cell suspension cultures. Physiol. Veg. 15(2): 261–77.Google Scholar
  7. 7.
    Barz, W. 1977. Catabolism of endogenous and exogenous compounds by plant cell cultures. In: Plant Tissue Culture and its bio-technological Application. (Eds.) W. Barz, E. Reinhard, M. H. Zenk, Springer-Verlag, Berlin-Heidelberg-New York pp. 153–71.CrossRefGoogle Scholar
  8. 8.
    Berlin, J., W. Barz, H. Harms and K. Haider. 1971. Degradation of phenolic compounds in plant cell cultures. FEBS Letters16: 141–146.PubMedCrossRefGoogle Scholar
  9. 9.
    Berlin, J. and W. Barz. 1971. Stoffwechsel von Isoflavonen und Cumostanen in Zell- und Callussuspen- sionskulturen vonPhaseolus aureusRoxb. Planta (Berl.)98: 300–14.CrossRefGoogle Scholar
  10. 10.
    Berlin, J., 1972. Ueber den Stoffwechsel von Isoflavonen und aromatischen Sauren in Pflanzen und pflanzlichen Zellsuspensions-kulturen. Dissertation Freiburg/Breisgau,.Google Scholar
  11. 11.
    Berlin, J., P. M. Dewick, W. Barz and H. Grisebach. 1972. Biosynthesis of coumestrol inPhaseolus aureus. Phytochemistry11: 1689–1693.CrossRefGoogle Scholar
  12. 12.
    Berlin, J., P. Kiss, D. Mueller-Enoch, H. -D. Gierse, W. Barz and B. Janistyn. 1974. Ueber den Abbau von Chalkonen und Isoflavonen in pflanzlichen Zellsuspensionskulturen. Z. Naturforschg.29c: 374–83.Google Scholar
  13. 13.
    Berlin, J. and W. Barz. 1975. Oxidative decarboxylation of para-hydroxy benzoic acids by peroxidases under invivoandvitroconditions. Z. Naturforschg.30c: 650–58.Google Scholar
  14. 14.
    Berlin J. and W. Barz. 1975. Stoffwechsel von Benzpe- sairem in pflanzlichen Zellsuspensionskulturen. Planta Medica, Supplement 134–39.Google Scholar
  15. 15.
    Bopp, M. and H. Pop. 1975. Lichtinduzierter Antho- cyanabbau in den Keimlingen vonSinapis Alba. Biochem. Physiol. Pflanzn168: 101–111.Google Scholar
  16. 16.
    Buss, V. C. 1977. Oxidases in aromatic metabolism. This volume. ChapterGoogle Scholar
  17. 17.
    Camm, E. L. and G. H. N. Towers. 1973. Phenylalanine Amonia Lyase. Phytochemistry12: 961–73.CrossRefGoogle Scholar
  18. 18.
    Chon, C. -H. and Z. A. Patrick. 1976. Identification and phytotoxic activity of compounds produced during decomposition of corn and rye residues in soil. J. Chem. Ecol.2: 369–87.CrossRefGoogle Scholar
  19. 19.
    Chulis, A. -J. and M. Tissut. 1975. Accumulation des flavonols et activite PAL, dans la fleur deFor-sythiaet la feuille de Mais, en salle conditionee. Z. Pflanzenphysiol.74: 404–14.Google Scholar
  20. 20.
    Cooper-Driver, G., J. J. Corner-Zamodits and T. Swain. 1972. The metabolic Fate of Hydroxybenzoic Acids in Plants. Z. Naturforschg.27b: 943–46.Google Scholar
  21. 21.
    Dagley, S. 1971. Catabolism of Aromatic Compounds by Microorganism. In: Advances in Microbial Physiology. (Eds.) A. H. Rose and J. F. Wilkinson. Academic Press, London, New York, Vol. 6, pp.1–46.Google Scholar
  22. 22.
    Durand, R. and M. H. Zenk. 1974. The homogensitate ring-cleavage in the biosynthesis of acetate-derived naphthoquinones of the Droseraceae. Phytochemistry23: 1483–92.CrossRefGoogle Scholar
  23. 23.
    Durand, R. and M. H. Zenk. 1974. Enzymes of homo- gentisate ring-cleavage pathway in cell suspension cultures of higher plants. FEBS-Letters39: 218–20.PubMedCrossRefGoogle Scholar
  24. 24.
    Effertz, B. and G. Weissenbock. 1976. Dynamik der Flavonoid-Akkumulation in Primarblattern vonAvena sativaL. Ber. Deutch. Bot. Ges.89:473–81.Google Scholar
  25. 25.
    Ellis, B. E. 1973. Catabolic ring-cleavage of tyrosine in plant cell cultures. Planta (Berl.)111: 113–18.CrossRefGoogle Scholar
  26. 26.
    Ellis, B. E. 1974. Degradation of aromatic compounds in plants. Lloydia37: 168–84.Google Scholar
  27. 27.
    Feung, C.-S, R. H. Hamilton and R. O. Mumma. 1973. Metabolism of 2,4-dicholorophenoxyacetic acid. V. Identification of metabolites in soybean callus tissue cultures. J. Agr. Food Chem.21: 637–40.CrossRefGoogle Scholar
  28. 28.
    Feung, C. -S, R. H. Hamilton and R. O. Mumma. 1975. Metabolism of 2,4-dichlorophenoxyacetic acid. VII. Comparison of metabolites from five species of plant callus tissue cultures. J. Agr. Food Chem.23: 373–76.CrossRefGoogle Scholar
  29. 29.
    Fleischer, A. 1976. Ueber Akkumulation und Lokalisation von Isoflavonen inCicer arietinumL. undGlycinemax. Staatsexamensarbeit, Universität Munster.Google Scholar
  30. 30.
    Frank, A. W. and L. Marion. 1956. The Biogenesis of Alkaloids. XVI. Hordenine metabolism in Barley. Can. J. Chem.34: 1641–46.CrossRefGoogle Scholar
  31. 31.
    Frey, G. 1977. Untersuchungen zum enzymatischen Abbau von Flavonolaglyka in höheren Pflanzen. Dissertation, Universität Unster.Google Scholar
  32. 32.
    Galliard, T. 1975. Degradation of plant lipids by hydrolytic and oxidative enzymes. In: Recent Advances in the Chemistry and Biochemistry of Plant Lipids. (Eds.) T. Galliard and E. J. Mercer, Academic Press, London-New York-San Francisco, pp. 319–57.Google Scholar
  33. 33.
    Gierse, H. -D. 1975. Lokalisation von Isoflavonen in Wurzeln vonCircer arietinumL. Dissertation Universität Freiburg/Breisgau.Google Scholar
  34. 34.
    Gierse, H. -D. and W. Barz. 1976. Ein floureszenz- mikroskopischer Nachweis von 3-Glucosidase in Wurzeln vonCircer arietinumL. Protoplasma88: 100–04.CrossRefGoogle Scholar
  35. 35.
    Gross, D. 1977. Recent advances in the Chemistry and Biochemistry of Lignin. This volume.Google Scholar
  36. 36.
    Harborne, J. B. 1962. The flavonol glycosides of wild and cultivated potatoes. Biochem. J.84: 100–04.PubMedGoogle Scholar
  37. 37.
    Harborne, J. B. 1977. New Flavonoid Glycosides in Plants. This volume.Google Scholar
  38. 38.
    Harms, H., K. Haider, J. Berlin, P. Kiss and W. Barz. 1972. Ueber 0-Demethylierung und Decarboxylierung von Benzoesauren in pflanzlichen Zellsuspensionskulturen. Planta (Berl.)105: 342–51.CrossRefGoogle Scholar
  39. 39.
    Heeger, V., K. -W. Leienbach and W. Barz. 1976. Stoffwechsel von Nikotinsaure in pflanzlichen Zell- suspensionskulturen. III. Bildung and Stoffwechsel von Trigonellin. Hoppe-Seyler’s Z. Physiol. Chem. 357: 1081–87.CrossRefGoogle Scholar
  40. 40.
    Heuser, L. W. 1972. ß-Glucosidase from “Marianna” Plum. Phytochemistry11: 2455–57.CrossRefGoogle Scholar
  41. 41.
    Hollander, H. 1976. Der Stoffwechsel von 1-Naphthy- lessigsaure in einer Zellsuspensions-kultur vonNico-tiana sylvestris. Staatsexamens-arbeit Universität Bochum.Google Scholar
  42. 42.
    Hösel, W. and W. Barz. 1972. Enzymatic Transformation of flavonols with a cell-free preparation fromCicer arietinumL. Biochim. Biophys. Acta 261: 294–03.CrossRefGoogle Scholar
  43. 43.
    Hösel, W., P. D. Shaw and W. Barz. 1972. Ueber den Abbau von Flavonolen in pflanzlichen Zellsuspensionskulturen. Z. Naturforschg.276: 946–54.Google Scholar
  44. 44.
    Hösel, W. and W. Barz. 1975. 3-Glucosidases fromCircer arietinumL. Purification and properties of isoflavone 7–0-glucoside specific B-glucosidases. Eur. J. Biochem.57: 607–16.PubMedCrossRefGoogle Scholar
  45. 45.
    Hösel, W. 1976. Ausbildung und Verteilung von Isoflavon-7–0-β-Dglykosid spezifischen β-Glykosidasen inCicer arietinumL. Planta Medica30: 97–103.PubMedCrossRefGoogle Scholar
  46. 46.
    Hösel, W. 1976. Reinigung und Charakterisierung zweier β-Glykosidasen mit bevorzugter Spezifität for Biochanin-A-7-O-apiosylglucosid ausCicer arietinumL. Hoppe-Seyler’s Z. Phsiol. Chem. 357: 1673–80.CrossRefGoogle Scholar
  47. 47.
    Hösel W., G Burmeister, P Kreysing and E Surholt. 1977. Enzymological Aspects of Flavonoid Catabolism in Plant Cell Cultures. In: Plant Cell Cultures and its Bio-Technological Application (Eds.) W. Barz, E. Reinhard and M. H. Zenk. Springer-Verlag, Berlin- Heidelberg-New York, pp. 172–77.CrossRefGoogle Scholar
  48. 48.
    Janistyn, B., W. Barz and R. Pohl. 1971. Abbau des 2’,4,4’6’-Tetrahydroxychalkon-2’- β-D-glucosid durch Kallussuspensionskulturen vonPisum sativumL. Z. Naturforschg.26b: 973–74.Google Scholar
  49. 49.
    Janistyn, B. and M. Stocker. 1976. Enzymatischer Abbau von (Ring B-U-14C)-5,7,3’,4’-Tetrahydroxyfla- vanon-7–0-glucosid zu 5,7-Dihydroxychromon-7–0-glucosid und (Ring-U-14C)-1,2,4-Trihydroxybenzol mit einem zellfreien Extrakt vonMentha longifolia. Z. Naturforschg.31c408–10.Google Scholar
  50. 50.
    Junepa, P. S. and R. K. Gholson. 1976. Acidic metabolites of benzyl alcohol in greenbug resistant barley. Phytochemistry15: 647–49.CrossRefGoogle Scholar
  51. 51.
    Kasekamp, Ch. 1976. Ueber die Lokalisation und Akkumulation von Isoflavonen in Wurzeln von Trifolium-Arten. Saatsexamensarbeit, Universität Munster.Google Scholar
  52. 52.
    Klusak, H. 1970. Die Veränderungen der Peroxydaseak- tivitat von Weizen-und Gerstenblattern nach der Infektion mit obligaten Parasiten. Biol. Plantarium12: 224–30.CrossRefGoogle Scholar
  53. 53.
    Kreysing, P. 1976. Stoffwechsel von Isoflavon-7- glukosiden in pflanzlichen Zellsuspensionskulturen. Staatsexamensarbeit, Universität Munster.Google Scholar
  54. 54.
    Kuc. 1972. Phytozlexins. Ann. Rev. Phytopathol.20: 207–32.Google Scholar
  55. 55.
    Leienbach, K. -W and W. Barz. 1976. Stoffwechsel von Nikotinsaure in pflanzlichen Zellsuspensionskulturen. II. Zur Isolierung, Charakterisierung und Enzymologie von Nikotinsaure-N-a-arabinosid. Hoppe-Seyler’s Z. Physiol. Chem.357: 1069–80.CrossRefGoogle Scholar
  56. 56.
    Mader, M., A. Nessl and M. Bopp. 1977. On the physiological significance of the isoenzyme groups of peroxidase from tobacco demonstrated by biochemical properties. II. pH-Optima, Michaelis-constants, maximal oxidation rates. Z. Pflanzenphysiol.82: 247–260.Google Scholar
  57. 57.
    Mann, J. D., C. E. Steinhart and S. H. Mudd. 1963. Distribution and Formation of Tyramine Methylferase during Germination of Barley. J. Biol. Chem.238: 676–81.Google Scholar
  58. 58.
    McClure, J. W. 1975. Physiology and Function of Flavonoids. In: The Flavonoids. (Eds.) J. B. Harborne, T. J. Mabry and H. Mabry. Chapman and Hall, London. Chapter 18.Google Scholar
  59. 59.
    Meyer, E. and W. Barz. 1975. Stoffwechsel und Abbau von Phenylathylaminen in pflanzlichen Zellsuspensionskulturen. Planta medica, Supplement 140–47.Google Scholar
  60. 60.
    Meyer, E. 1977. Abbau von Phenylathylaminen in pflanzlichen Zellsuspensionskulturen. Dissertation, Universität Munster.Google Scholar
  61. 61.
    Miller, Co. 0. 1969. Control of Deoxyisoflavone Synthesis in Soybean Tissue. (Planta (Berl.)87: 26–35.Google Scholar
  62. 62.
    Miller, L. P. 1973. Glycosides. In: Phytochemistry Vol. I. (Ed.) L. P. Miller. Van Nostrand Reinhold Company, NewYork-Cincinnati-Toronto-London-Melbourne, pp. 297–376.Google Scholar
  63. 63.
    Mothes, K. 1969. Die Alkaloide im Stoffwechsel der Pflanze. Experientia25: 226–39.CrossRefGoogle Scholar
  64. 64.
    Muhle, E., W. Hösel and W. Barz. 1976. Catabolism of flavonol glucosides in plant cell suspension cultures. Phytochemistry15: 1669–72.CrossRefGoogle Scholar
  65. 65.
    Nairn, M., B. Gestetner, B. Zilkah, J. Birk and A. Bondi. 1974. Soybean Isoflavones. Characterization, Determination and Antifungal Activity. J. Agr. Food Chem.22: 806–10.CrossRefGoogle Scholar
  66. 66.
    Noel, G. 1955. Untersuchungen über den Einfluss verschiedener Faktoren auf den Flavonolgehalf vonFagopyrum esculentumL. Monench andFagopyrum tar-taricumL. Gaertner. Pharmazie10: 609–15 and 679- 91.Google Scholar
  67. 67.
    Ojima, K. and O. L. Gamborg. 1968. The metabolism of 2,4-dichlorophenoxyacetic acid by suspension cultures of soybean root. In: Biochemistry and Physiology of Plant Growth Substances. (Eds.) F. Wight- man, G. Setterfield. The Runge Press, Ottawa, pp. 857–65.Google Scholar
  68. 68.
    Patschke, L., D. Hess and H. Grisebach. 1964. Ueber den Abbau von 4,2’, 4’, 6’-Tetrahydroxychalkon-2’- glucosid und 4,2’,4’,-Trihydroxychalkon-4’-glucosid in Rotkohlkeimlingen und Petunien. Z. Naturforschg.19b: 1114–17.Google Scholar
  69. 69.
    Patzlaff, M. 1974. Ueber den Abbau von Naringenin durch Enzympraparationen aus Zellsuspensionskulturen der Sojabohne. Diplomarbeit, Universität, Munster.Google Scholar
  70. 70.
    Podstolski, A. and St. Lewak. 1970. Specific Phloridzin Glucosidases from Seeds and Leaves of Apple Tree. Phytochemistry9: 189–96.CrossRefGoogle Scholar
  71. 71.
    Popovici, G. and G. Weissenbock. 1976. Aenderungen des Flavonoidmusters wahrend der Ontogeneses vonAvena sativaL. Berg. Deutsch. Bot. Ges.89: 483–89.Google Scholar
  72. 72.
    Popovici, G. and G. Weissenbock. 1977. Dynamics of C-Glycosylflavones in Primary Leaves ofAvena sativaL. grown under Field Conditions. Z. Pflanzen- physiol.82:450–54.Google Scholar
  73. 73.
    Rabitzsch G. 1959. Zur Analytik und Biochemie der p-Hydroxy- 3 phenylalkylamine inHordeum vulgareL. Planta Medicä7: 268–97.CrossRefGoogle Scholar
  74. 74.
    Reigh, D. L., S. H. Wender and C. Smith. 1973. Scopoletin, a substrate for an isoperoxidase from tobacco tissue cultures. Phtochemistry14: 1715–17.Google Scholar
  75. 75.
    Reinhard, E. 1974. Biotransformation by plant tissue cultures. In: Tissue Culture and Plant Science. (Ed.) H. E. Street, Academic Press, London-New York, pp. 433–59.Google Scholar
  76. 76.
    Reznik, H. 1960. Vergleichende Biochmie der Phenyl- propane. Ergebnisse Biol.23: 14–46.Google Scholar
  77. 77.
    Robinson, T. 1974. Metabolism and function of alcaloids in plants. Science184: 430–435.PubMedCrossRefGoogle Scholar
  78. 78.
    Sandermann, H., H. Diesperger and D. Scheel. 1977. Metabolism of Xenobiotics by Plant Cell Cultures. In: Plant Tissue Culture and its Biotechnological Application. (Eds.) W. Barz, E. Reinhard, and M. H. Zenk, Springer-Verlag, Berlin-Heidelberg-New York, pp. 178–96.CrossRefGoogle Scholar
  79. 79.
    Schmitt, J. H. and M. H. Zenk. 1968. Determination of D-Amino Acids by sterospecific enzymic Acetylation. Anal. Biochem.23: 433–41.PubMedCrossRefGoogle Scholar
  80. 80.
    Schreiber, W. 1975. Degradation of 3-Hydroxyflavone by Horseradish Peroxidase. Biochem. Biophys. Res. Comm.63: 509–514.PubMedCrossRefGoogle Scholar
  81. 81.
    Sharma, H. K. and Ch. S. Vaidyanathan. 1975. A new mode of ring cleavage of 2,3-dihydroxybenzoic acid. Eur. J. Biochem.56: 163–71.PubMedCrossRefGoogle Scholar
  82. 82.
    Shimabukuro, R. H. 1975. Herbicide metabolism by glutathione conjugation in plants. In: Environmental Anality and Safety. Vol. IV (Eds.) F. Coulson, F. Korte, G. Thieme, Stuttgart pp. 140–48.Google Scholar
  83. 83.
    Stafford, H. A. 1974. The Metabolism of Aromatic Compounds. Ann. Rev. Plant Physiol.25: 459–86.CrossRefGoogle Scholar
  84. 84.
    Staude, M. and H. Reznik. 1973. Das Flavonoidmuster der Winterknospen und Laubblatter vonCoryllus avellana. Z. Pflazenphysiol.68: 346–56.Google Scholar
  85. 85.
    Tabata, M., F. Ideda, N. Hiraoka and M. Konoshima. 1976. Glucosylation of phenolic compounds byDatura innoxiasuspension cultures. Phytochemistry15: 1225–29CrossRefGoogle Scholar
  86. 86.
    Thieme, H. and H. -J. Winkler. 1971. Ueber Vorkommen und Akkumulation von Phenolglykosiden in der Familie der Primulaceen. Pharmazie26: 434–39.PubMedGoogle Scholar
  87. 87.
    Tissut, M. and K. Egger. 1972. Les glycosides flavoniques foliaries de quelques arbres au cours du cycle vegetatif. Phytochemistry11: 631–34.CrossRefGoogle Scholar
  88. 88.
    Towers, G. H. N. 1964. Metabolism of Phenolics in Higher Plants and Microorganisms. In: Biochemistry of phenolic Compounds. (Ed.) J. B. Harborne, Academic Press, London-New York, pp. 249–94.Google Scholar
  89. 89.
    Venis, M. A. 1972. Auxin-induced conjugation systems in Peas. Plant Physiol.49: 24–27PubMedCrossRefGoogle Scholar
  90. 90.
    Virtanen, A. J. and P. K. Hietala. 1958. Isolation of an Anti-Sclerotinia Factor, 7-Hydroxy-4’-methoxy- isoflavone from Red-Clover. Acta Chem. Scand.12: 579–80.CrossRefGoogle Scholar
  91. 91.
    Wiermann, R. 1973. Ueber die Beziehungen Zwischen flavonolaufbauenden Enzymen, einem flavonol-umwandeln- den Enzym und der Akkumulation phenylpropanoider Verbindungen wahrend der Antherenetwicklung. Planta (Berl.)110: 353–60.CrossRefGoogle Scholar
  92. 92.
    Wilhelm, P.-J. 1974. Untersuchungen zur Aufnahme und zum Stoffwechsel von Benzoesauren und Morphak- tinen durch Zellsuspensionskulturen der Sojabohne und der Mungbohne. Diplomarbeig, Universität Munster.Google Scholar
  93. 93.
    Zenk, M. H. 1962. Aufnahme und Stoffwechsel von Naphthylessigsaure durch Erbsenepikotyle. Planta58:75–94.CrossRefGoogle Scholar
  94. 94.
    Zenk, M. H. 1967. Biochemie und Physiologie sekundarer Pflanzenstoffe. Ber. Deutch. Bot. Ges.80; 573–91.Google Scholar
  95. 95.
    Zenk, M. H. 1977. Recent work on cinnamoyl CoA derivatives. This volume.Google Scholar

Copyright information

© Plenum Press, New York 1979

Authors and Affiliations

  • W. Barz
    • 1
  • W. Hoesel
    • 1
  1. 1.Lehrstuhl für Biochemie der PflanzenWestfälische Wilhelms-UniversitätMünsterFederal Republic of Germany

Personalised recommendations