Whole Saliva Proteases: Development of Methods for Determination of Origins

  • Greg R. Germaine
  • Lois M. Tellefson
  • Gary L. Johnson
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 107)


Whole saliva contains several proteases not found in the major gland secretions (1–5). Although many oral microorganisms with protease activity have been reported (6–16), none has been shown to provide the origin for any oral protease. Our interest has been the origin (host/microbe) of proteases in the oral cavity of man. In order to begin such a study, we sought a protease assay which would yield information pertinent to the recognition and characterization of proteases without the requirement for extensive purification efforts. We chose to use protein substrate cleavage patterns as visualized by Polyacrylamide „gel electrophoresis (PAGE) as a method of protease assay, recognition, and characterization. Thus, determination of the cleavage patterns generated from a collection of substrate proteins by saliva, for example, will provide a basis for the recognition of similar proteolytic activities which might be produced by oral microorganisms. In addition, extremely limited proteolysis (one scission per substrate molecule), which would be undetected with most other assay techniques, may be detected by PAGE analyses. In this report our initial results using radio-acetylated bovine serum albumin (BSA) as a substrate protein are presented.


Bovine Serum Albumin Minor Salivary Gland Cleavage Pattern Bovine Serum Albumin Molecule Subgingival Plaque 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Modeer, T., Acta Odont. Scand. 32: 321, 1974.PubMedCrossRefGoogle Scholar
  2. 2.
    Soder, P. O., Odont. T. 75: 221, 1967.Google Scholar
  3. 3.
    Soder, P. O., Odont. T. 75.: 237, 1967.Google Scholar
  4. 4.
    Soder, P. O., J. Dent. Res. 51: 389, 1972.PubMedCrossRefGoogle Scholar
  5. 5.
    Lindquist, L., Soder, P. O., Modeer, T. and Lundblad, G., Acta Odont. Scand. 32 : 103, 1974.CrossRefGoogle Scholar
  6. 6.
    Frostell, G., Nord, C. E. and Soder, P. O., Ondt. Revy 24: 27, 1973.Google Scholar
  7. 7.
    Cowman, R. A. and Fitzgerald, R. J., J. Dent. Res. 54: 298, 1975.PubMedGoogle Scholar
  8. 8.
    Cowman, R. A., Perrella, M. M. and Fitzgerald, R. J., J. Dent. Res. 55: 391, 1976.PubMedCrossRefGoogle Scholar
  9. 9.
    Genco, R. J., Plaut, A. G. and Moellering, R. C., J. Infect. Dis. (suppl.) 131: S17, 1975.Google Scholar
  10. 10.
    Plaut, A. G., Genco, R. J. and Tomasi, T. B., Adv. Exp. Med. Biol. 45: 245, 1974.PubMedGoogle Scholar
  11. 11.
    Plaut, A. G., Genco, R. J. and Tomasi, T. B., J. Immunol. 113: 289, 1974.Google Scholar
  12. 12.
    Murphy, R. A., J. Dent. Res. 53: 832, 1974.PubMedCrossRefGoogle Scholar
  13. 13.
    Mergenhagen, S. E. and Scherp, H. W., Arch. Oral Biol. 1: 333, 1960.CrossRefGoogle Scholar
  14. 14.
    Omata, R.R. and Hamp, E. G., J. Dent. Res. 40: 171, 1961.PubMedCrossRefGoogle Scholar
  15. 15.
    Loesche, W. J., Paunio, K. U., Woolfolk, M. P. and Hockett, R. N., Infect. Immun. 9: 329, 1974.PubMedGoogle Scholar
  16. 16.
    Remold, H., Fasold, H. and Staib, F., Biochim. Biophys. Acta 167: 399, 1968.PubMedGoogle Scholar
  17. 17.
    Montelaro, R. C. and Rueckert, R. R., J. Biol. Chem. 250: 1413, 1975.PubMedGoogle Scholar
  18. 18.
    Lowry, O. H., Rosebrough, H. J., Farr, A. L. and Randall, R. J., J. Biol. Chem. 193: 265, 1951.PubMedGoogle Scholar
  19. 19.
    Studier, F. W., J. Mol. Biol. 79: 237, 1973.PubMedCrossRefGoogle Scholar
  20. 20.
    Laemmli, U. K., Nature 227: 680, 1970.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1978

Authors and Affiliations

  • Greg R. Germaine
    • 1
  • Lois M. Tellefson
    • 1
  • Gary L. Johnson
    • 1
  1. 1.Division of Oral Biology, School of Dentistry and Department of MicrobiologyUniversity of MinnesotaMinneapolisUSA

Personalised recommendations