Multiple Forms of Dextran-Binding Proteins from Streptococcus Mutans

  • Mead M. McCabe
  • Ronald M. Hamelik
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 107)


Lectins and the carbohydrates to which they bind have been implicated in interspecies and intraspecies cell recognition and adherence in several organisms. The implication of lectins in these processes not only confirms Moscona’s elegant proposal that macromolecules of the eukaryote cell surface mediate the processes of cell recognition and adherence (1), but provides a molecular mechanism for this process and indicates that this mechanism functions in diverse organisms, ranging from bacteria to mammals. Thus, biochemically similar mechanisms for cell recognition and adherence apparently have evolved independently to facilitate biological interactions as different as host recognition of the symbiotic members of the genus Rhizobium by clover root hairs (2), cell aggregation in the cellular slime molds (3,4), fusing of myoblasts into myotubules during chick embryo muscle differentiation (5–7), sperm-egg recognition and attachment (8), the attachment of Streptococcus mutans to host surfaces (9), and, perhaps, the binding of Vibrio cholerae (10) and Escherichia coli (11,12) to host tissues.


DEAE Cellulose Streptococcus Mutans Lectin Activity Cellular Slime Mold Protein Zone 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Moscana, A. A., J. Cell Comp. Physiol. 60: 65, 1962.CrossRefGoogle Scholar
  2. 2.
    Dazzo, F. B. and Hubbell, H. D., Appl. Microbiol. 30: 1017, 1975.PubMedGoogle Scholar
  3. 3.
    Simpson, D. C., Rosen, S. D. and Bar ondes, S. H., Biochem. 13: 3487, 1974.CrossRefGoogle Scholar
  4. 4.
    Simpson, D. L., Rosen, S. D. and Barondes, S. H., Biochim. Biophys. Acta 412: 109, 1975.PubMedGoogle Scholar
  5. 5.
    Gartner, T. K. and Podleski, T. R., Biochem. Biophys. Res. Comm. 70: 1142, 1976.PubMedCrossRefGoogle Scholar
  6. 6.
    Nowak, T. P., Haywood, P. L. and Barondes, S. H., Biochem. Biophys. Res. Comm. 68: 650, 1976.PubMedCrossRefGoogle Scholar
  7. 7.
    Den, H. and Malinzak, D. A., J. Biol. Chem. 252: 5444, 1977.PubMedGoogle Scholar
  8. 8.
    Giade, C. G. and Vacquier, V. D., Nature 267: 836, 1977.CrossRefGoogle Scholar
  9. 9.
    McCabe, M. M., Hamelik, R. M. and Smith, E. E., Biochem. Biophys. Res. Comm. 78: 273, 1977.PubMedCrossRefGoogle Scholar
  10. 10.
    Jones, G. W. and Freter, R., Infect. Immun. 14: 240, 1976.PubMedGoogle Scholar
  11. 11.
    Ofek, I., Mirelman, D. and Sharon, N., Nature 265: 623, 1977.PubMedCrossRefGoogle Scholar
  12. 12.
    Gibbons, R. A., Jones, G. W. and Sellwood, R., J. Gen. Microbiol. 86: 228, 1975.PubMedGoogle Scholar
  13. 13.
    McCabe, M. M. and Smith, E. E., Infect. Immun. 7: 829, 1973.PubMedGoogle Scholar
  14. 14.
    Sundberg, L. and Porath, J., J. Chromatog. 90: 87, 1974.CrossRefGoogle Scholar
  15. 15.
    McCabe, M. M. and Smith, E. E., Infect. Immun. 16: 760, 1977.PubMedGoogle Scholar
  16. 16.
    Lowry, O. H., Rosebrough, N. J., Farr, A. L. and Randall, R. J., J. Biol. Chem. 193: 265, 1951.PubMedGoogle Scholar
  17. 17.
    Sedmak, J. J. and Grossberg, S. E., Anal. Biochem. 79: 544, 1977.PubMedCrossRefGoogle Scholar
  18. 18.
    Davis, B. J., Ann. N.Y. Acad. Sci. 121: 404, 1964.PubMedCrossRefGoogle Scholar
  19. 19.
    Weber, K. and Osborn, M., J. Biol. Chem. 244: 4406, 1969.PubMedGoogle Scholar
  20. 20.
    Zacharius, R. M., Zell, T. E., Morrison, J. H. and Woodlock, J. J., Anal. Biochem. 30: 148, 1969.PubMedCrossRefGoogle Scholar
  21. 21.
    Leavitt, R. D., Felsted, R. L. and Bachur, N. R., J. Biol. Chem. 252: 2961, 1977.PubMedGoogle Scholar
  22. 22.
    Felsted, R. L., Egorin, M. J., Leavitt, R. D. and Bachur, N. R., J. Biol. Chem. 252: 2967, 1977.PubMedGoogle Scholar
  23. 23.
    Smith, D. J. and Taubman, M. A., Infect. Immun. 15: 91, 1977.PubMedGoogle Scholar
  24. 24.
    Freedman, M. L. and Tanzer, J. M., Infect. Immun. 10: 189, 1974.PubMedGoogle Scholar
  25. 25.
    Slade, H. D., in Immunological Aspects of Dental Caries (Edited by Bowen, W. H., Genco, R. J. and O’Brien, T. C), p. 21, Information Retrieval, Inc., Washington, D.C., 1976.Google Scholar
  26. 26.
    Germaine, G. R. and Schachtele, C. R., Infect. Immun. 13: 365, 1976.PubMedGoogle Scholar
  27. 27.
    Spinell, D. M. and Gibbons, R. J., Infect. Immun. 10: 1448, 1974.PubMedGoogle Scholar
  28. 28.
    McCabe, M. M. and Smith, E. E., in Immunological Aspects of Dental Caries (Edited by Bowen, W. H., Genco, R. J. and O’Brien, T. C.) p. 111, Information Retrieval, Inc., Washington, D.C., 1976.Google Scholar

Copyright information

© Plenum Press, New York 1978

Authors and Affiliations

  • Mead M. McCabe
    • 1
  • Ronald M. Hamelik
    • 1
  1. 1.Laboratory of Oral Microbiology, Department of Microbiology, School of MedicineUniversity of MiamiMiamiUSA

Personalised recommendations