Production of Animal Protein from Nonprotein Nitrogen Chemicals

  • William Chalupa
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 105)


Ruminants obtain amino acids (AA) from microbial protein synthesized in the rumen and from feed proteins that escape ruminal degradation. Synthesis of microbial protein provides a mechanism for obtaining AA from NPN. Effectiveness of NPN utilization depends upon production and utilization of ammonia by rumen microbes. Because ammonia is produced from protein and NPN, feeding proteins resistant to microbial degradation forces utilization of ammonia derived from NPN. The quantity of microbial cells formed in the anaerobic rumen fermentation system is primarily dependent upon energy supply but can be modulated by types and supplies of other nutrients (i.e. amino-N, minerals, growth factors) and by growth rate of rumen bacteria. Potential quantities of NPN that can be utilized with different feed ingredients can be estimated from amounts of feed protein degraded in the rumen, and requiring transformation into protein via growth of rumen microbes, and from amounts of energy provided by feed ingredients. High energy feed ingredients with low amounts of degradable protein are most favorable for NPN utilization, but NPN has also been used successfully with high-fibrous, low energy feed materials. Growth, lactation and reproduction have been obtained on diets containing more than 97% of the nitrogen from NPN, but microbial protein alone cannot provide quantities of AA needed for high levels of productivity. Regulating ruminal degradation of dietary protein and utilizing NPN for rumen protein production is a highly desirable strategy for producing human foods with ruminants.


Dietary Protein Animal Protein Feed Ingredient Nonprotein Nitrogen Microbial Protein 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allison, M. J. (1969). Biosynthesis of amino acids by ruminai mircoorganisms. J. Anim. Sci., 29, 797–807.Google Scholar
  2. Allison, M. J. (1970). Nitrogen metabolism in ruminal microorganisms. Pages 456–473, In, ‘Physiology of Digestion in the Ruminant’, A. T. Phillipson (Editor). Oriel Press Ltd., New Castle upon Tyne, England.Google Scholar
  3. Al-Rabbat, M. F., Baldwin, R. L. and Weir, W. C. (1971a). In vitro 15nitrogen-tracer technique for some kinetic measures of ruminal ammonia. J. Diary Sci., 54, 1150–1161.CrossRefGoogle Scholar
  4. Al-Rabbat, M. F., Baldwin, R. L. and Weir, W. C. (1971b). Microbial growth dependence on ammonia nitrogen in the bovine rumen. J. Dairy Sci., 54, 1162–1172.CrossRefGoogle Scholar
  5. Ammerman, C. B., Verde, G. J., Moore, J. E., Burns, W. C. and Chicco, C. F. (1972). Biuret, urea and natural proteins as nitrogen supplements for low quality roughage for sheep. J. Anim. Sci., 35, 121–127.Google Scholar
  6. Annison, E. F. (1975). Microbial protein synthesis in relation to amino acid requirements. Pages 141–152, In, ’ Tracer Studies on Non-protein nitrogen for Ruminants IIü Int. Atomic Energy Agency, Vienna.Google Scholar
  7. Anonymous. (1972). Conclusions and recommendations. Pages 171–176, In, ‘Tracer Studies on Non-protein Nitrogen for Ruminants’. Int. Atomic Energy Agency, Vienna.Google Scholar
  8. Bauman, D. E., Davis, C. L., Frobish, R. A. and Sachan, D. S. (1971). Evaluation of polyethylene glycol method in determining rumen fluid volume in dairy cows fed different diets. J. Dairy Sci., 54, 928–930.CrossRefGoogle Scholar
  9. Black, J. L. (1971). A theoretical consideration of the effect of preventing ruminal fermentation on the efficiency of utilization of dietary energy and protein in lambs. Brit. J. Nutr., 25, 31–55.CrossRefGoogle Scholar
  10. Blaisdell, F. S., Clark, J. H., Wohlt, J. E. and Spires, H. R. (1977). Effects of postruminal infusions of casein or amino acids on milk and milk protein production. Amer. Soc. Anim. Sci. Abstracts, 221.Google Scholar
  11. Braund, D. G. and Dolge, K. L. (1976). Pro:right feeds. A new approach to dairy nutrition and production. Agway Cooperator, Sept., 1–2.Google Scholar
  12. Broderick, G. A. (1975). Factors affecting responses to protected amino acids and proteins. Pages 211 to 259, In, ‘Protein Nutritional Quality of Foods and Feeds’, Vol. 1, Part 2. Mendel Friedman (Editor). Marcell Dekker Inc., NYGoogle Scholar
  13. Broderick, G. A. (1978). In vitro procedures for estimating rates of ruminai protein degradation and proportions of dietary protein escaping the rumen undegraded. J. Nutr., 108, 181–190.Google Scholar
  14. Bryant, M. P. (1970). Microbiology of the rumen. Pages 484–515, In, ‘Duke’s Physiology of Domestic Animals’, 8th ed. E. J. Swenson (Editor). Cornell Univ. Press, Ithaca.Google Scholar
  15. Buttery, P. J. (1976). Protein synthesis in the rumen: Its implication in the feeding of nonprotein nitrogen to ruminants. Pages 145–168, In, ‘Principles of Cattle Production’, H. Swan and W. H. Broster (Editors). Butterworths, Boston.Google Scholar
  16. Chalupa, W. (1970a). NPN sources other than urea as components of ruminant diets. Clemson Univ. Dairy Sci. Res. Series, 54, 1–22.Google Scholar
  17. Chalupa, W. (1970b). Urea as a component of ruminant diets. Proc. Cornell Nutr. Conf., 64–76.Google Scholar
  18. Chalupa, W. (1972). Metabolic aspects of nonprotein nitrogen utilization in ruminant animals. Fed. Proc., 31, 1152–1164.Google Scholar
  19. Chalupa, W. (1973). Utilization of non-protein nitrogen in the production of animal protein. Proc. Nutr. Soc., 32, 99–105.Google Scholar
  20. Chalupa, W. (1975a). Amino acid nutrition of growing cattle. Pages 175–194, In, ‘Tracer Studies on Non-protein Nitrogen for Ruminants II’. Int. Atomic Energy Agency, Vienna.Google Scholar
  21. Chalupa, W. (1975b). Rumen bypass and protection of protein and amino acids. J. Dairy Sci., 58, 1198–1218.CrossRefGoogle Scholar
  22. Chalupa, W. (1976a). Approaches to determining amino acid requirements in producing ruminants. Pages 99–109, In, ‘Reviews in Rural Science II’, T. M. Sutherland, J. R. McWilliam and R. A. Leng (Editors). Univ. New England Publ. Unit, Armidale, NSW, Australia.Google Scholar
  23. Chalupa, W. (1976b). Degradation of amino acids by the mixed rumen microbial population. J. Anim. Sci., 43, 828–834.Google Scholar
  24. Chalupa, W. (1977). Manipulating rumen fermentation. J. Anim. Sci., 45, 585–599.Google Scholar
  25. Chalupa, W., Clark, J., Opliger, P. and Lavker, R. (1970). Detoxication of ammonia in sheep fed soy protein or urea. J. Nutr., 100, 170–176.Google Scholar
  26. Chalupa, W. and Davis, R. F. (1976). An update on the use of urea in ruminant feeding. Proc. Maryland Nutr. Conf., 6–14.Google Scholar
  27. Clark, J. H. (1975a). Lactational responses to postruminal administration of proteins and amino acids. J. Dairy Sci., 58, 1178–1197.CrossRefGoogle Scholar
  28. Clark, J. H. (1975b). Pages 261–304, In, ‘Protein Nutritional Quality of Foods and Feeds’, Vol. 1, Part 2. Mendel Friedman (Editor). Marcell Dekker, Inc., NY.Google Scholar
  29. Conrad, H. R. and Hibbs, J. W. (1968). Nitrogen utilization by the ruminant. Appreciation of its nutritive value. J. Dairy Sci., 51, 276–285.CrossRefGoogle Scholar
  30. Conrad, H. R. and Hibbs, J. W. (1975). Association of nonprotein nitrogen with decreased meal size and eating intervals. J. Dairy Sci., 58, 746.Google Scholar
  31. Dingley, P. Y., Sniffen, C. J., Johnson, L. L., Hoover, W. H. and Walker, C. K. (1975). Protein solubility and amino acid supply to the udder. J. Dairy Sci., 58, 1240.Google Scholar
  32. Evans, J. L. and Biddle, G. N. (1973). Utilization in growing cattle of N in sources that differ in soluble N. J. Anim. Sci., 37, 367.Google Scholar
  33. Evans, J. L. and Nomani, M. Z. A. (1972). Influence of level and source of diet nitrogen on its utilization. J. Anim. Sci., 35, 284Google Scholar
  34. Ferguson, K. A. (1975). The protection of dietary proteins and amino acids against microbial fermentation in the rumen. Pages 448–463, In, ‘Digestion and Metabolism in the Ruminant’, I. W. McDonald and A. C. I. Warner (Editors). Univ. New England Publ. Unit, Armidale, NSW, Australia.Google Scholar
  35. Fick, K. R., Ammerman, C. B., McGowan, C. H., Loggins, P. E. and Conell, J. A. (1973). Influence of supplemental energy and biuret nitrogen on the utilization of low quality roughage by sheep. J. Anim. Sci., 36, 137–143.Google Scholar
  36. Fonnesbeck, P. V., Kearly, L. C. and Harris, L. E. (1975). Feed grade biuret as a protein replacement for ruminants. J. Anim. Sci., 40, 1150–1184.Google Scholar
  37. Goatcher, W. D. and Church, D. C. (1970a). Taste responses in ruminants. II. Reactions of sheep to acids, quinine, urea, and sodium hydroxide. J. Anim. Sci., 30, 784–790.Google Scholar
  38. Goatcher, W. D. and Church, D. C. (1970b). Taste responses in ruminants. IV. Reactions of pygmy goats, normal goats, sheep and cattle to acetic acid and quinine hydrochloride. J. Anim. Sci., 31, 373–382.Google Scholar
  39. Harrison, D. G., Beever, D. E., Thomson, D. J. and Osbourn, D. F. (1975). Manipulation of rumen fermentation in sheep by increasing the rate of flow of water from the rumen. J. Agric. Sci., 85, 93–101.CrossRefGoogle Scholar
  40. Helmer, L. G., Bartley, E. E. and Deyoe, C. W. (1970). Feed processing. VI. Comparison of starea, urea and soybean meal as protein sources for lactating dairy cows. J. Dairy Sci., 53, 883–887.CrossRefGoogle Scholar
  41. Helmer, L. G. and Bartley, E. E. (1971). Progress in the utilization of urea as a protein replacement for ruminants. A Review. J. Dairy Sci., 54, 25–51.CrossRefGoogle Scholar
  42. Hemsley, J. A. (1967). Sodium chloride intake and flow through the rumen. Aust. J. Exp. Biol. Med. Sci., 45, 39.Google Scholar
  43. Henderickx, H. K. (1976). Quantitative aspects of the use of nonprotein nitrogen in ruminant feeding. Cuban J. Agric. Sci., 10, 1–18.Google Scholar
  44. Henderson, C., Hobson, P. N. and Summers, R. (1969). Proc. IV Int. Symp. on the Continuous Culture of Microorganisms. P. 189. Czechoslovak Academy of Sciences, Prague.Google Scholar
  45. Hodgson, J. C. and Thomas, P. C. (1975). A relationship between the molar proportion of propionic acid and the clearance rate of the liquid phase in the rumen of the sheep. Brit. J. Nutr., 33, 447–456.CrossRefGoogle Scholar
  46. Holtor, J. B., Colovas, N. F. and Urban, W. E. (1968). Urea for lactating dairy cattle. IV. Effect of urea vs. no urea in the concentrate on production performance in a high producing herd. J. Dairy Sci., 51, 1403–1408.CrossRefGoogle Scholar
  47. Huber, J. T. (1975). Protein and nonprotein nitrogen utilization in practical dairy rations. J. Anim. Sci., 41, 954–961.Google Scholar
  48. Huber, J. T. (1976a). NPN fears unfounded. Anim. Nutr. and Health, June/July, 12–13.Google Scholar
  49. Huber, J. T. (1976b). Use of nonprotein nitrogen by lactating cows. Feedstuffs, Dec. 6, 13–14.Google Scholar
  50. Huber, J. T. and Cook, R. M. (1972). Influence of site of administration of urea on voluntary intake of concentrate by lactating cows. J. Dairy Sci., 55, 1470–1473.CrossRefGoogle Scholar
  51. Hume, I. D., Muir, R. J. and Somers, M. (1970). Synthesis of microbial protein in the rumen. I. Influence of level of nitrogen intake. Aust. J. Agric. Res., 32, 283–296.Google Scholar
  52. Hungate, R. E. (1966). The Rumen and its Microbes. Academic Press, NY.Google Scholar
  53. Isaacson, H. R., Hinds, F. C., Bryant, M. P. and Owens, F. N. (1975). Efficiency of energy utilization by mixed rumen bacteria in continuous culture. J. Dairy Sci., 58, 1645–1659.CrossRefGoogle Scholar
  54. Kertz, A. F., Brockett, M. K., Davidson, L. E. and Betz, N. L. (1977). Influence of ambient ammonia odor on acceptance of a nonurea ration by lactating cows. J. Dairy Sci., 60, 788–790.CrossRefGoogle Scholar
  55. Kertz, A. F. and Everett, J. P. (1975). Utilization of urea by lactating cows — An industry viewpoint. J. Anim. Sci., 41, 945–953.Google Scholar
  56. Latham, J. J. and Sharpe, M. E. (1975). Rumen microbial population changes of lambs given mineral-supplemented diets. Proc. Nutr. Soc., 34, 113A.Google Scholar
  57. Leng, R. A. (1976). Factors influencing net protein production by rumen microbiota. Pages 85–91, In, ‘Reviews in Rural Science II’, T. M. Sutherland, J. R. McWilliam and R. A. Leng (Editors). Univ. New England Publ. Unit, Armidale, NSW, Australia.Google Scholar
  58. Leng, R. A. and Preston, T. R. (1976). Sugar cane for cattle production: Present constraints, perspectives and research priorities. Trop. Anim. Prod., 1, 1–22.Google Scholar
  59. Kempton, T. J., Nolan, J. V. and Leng, R. A. (1977). Principles for the use of non-protein nitrogen and by-pass proteins in diets of ruminants. World Anim. Rev., 22, 2–10.Google Scholar
  60. MacRae, J. C. (1976). Utilization of the protein of green forage by ruminants at pasture. Pages 93–97, In, ‘Reviews in Rural Science II’, T. M. Sutherland, J. R. McWilliam and R. A. Leng (Editors). Univ. New England Publ. Unit, Armidale, NSW, Australia.Google Scholar
  61. Maeng, W. J., Van Nevel, C. J., Baldwin, R. L. and Morris, J. G. (1976). Rumen microbial growth rates and yields: Effect of amino acids and protein. J. Dairy Sci., 59, 68–79.CrossRefGoogle Scholar
  62. Martz, F. A., Wilson, G., Campbell, J. R. and Hilderbrand, E. S. (1973) Voluntary intake of urea diets for ruminants. J. Dairy Sci., 37, 351.Google Scholar
  63. Mathison, G. W. and Milligan, L. P. (1971). Nitrogen metabolism in sheep. Brit. J. Nutr., 25, 351–366.CrossRefGoogle Scholar
  64. McMeniman, N. P., Ben-Ghedalia, D. and Armstrong, D. G. (1976). Nitrogen-energy interactions in rumen fermentation. Pages 217–229, In, ‘Protein Metabolism and Nutrition’, D. J. A. Cole, K. N. Boorman, P. J. Buttery, D. Lewis, R. J. Neale and H. Swan (Editors). Butterworths, Boston.Google Scholar
  65. Mercer, J. R. and Annison, E. F. (1976). Utilization of nitrogen in ruminants. Pages 397–416, In, ‘Protein Metabolism and Nutrition’ D. J. A. Cole, K. N. Boorman, P. J. Buttery, D. Lewis, R. J. Neale and H. Swan (Editors). Butterworths, Boston.Google Scholar
  66. Miller, E. L. (1973). Evaluation of foods as sources of nitrogen and amino acids. Proc. Nutr. Soc., 32, 79–84.Google Scholar
  67. Nolan, J. V. (1975). Quantitative models of nitrogen metabolism in sheep. Pages 416–431, In, ‘Digestion and Metabolism in the Ruminant’, I. W. McDonald and A. C. I. Warner (Editors). Univ. New England Publ. Unit, Armidale, NSW, Australia.Google Scholar
  68. Oltjen, R. R. (1969). Effects of feeding ruminants nonprotein nitrogen as the only nitrogen source. J. Anim. Sci., 28, 673–682.Google Scholar
  69. Oltjen, R. R., Dinius, D. A. and Goering, H. K. (1975)7 Cottonseed hulls plus NPN-protein supplements for wintering calves. J. Anim. Sci., 41, 412.Google Scholar
  70. Oltjen, R. R., Williams, E. E., Slyter, L. L. and Richardson, G. V. (1969). Urea versus biuret in a roughage diet for steers. J. Anim. Sci.,, 29, 816–822.Google Scholar
  71. Orskov, E. R. (1970)7 Proceedings of the 4th Nutrition Conference for Feed Manufacturers. Univ. Nottingham, Churchill, London.Google Scholar
  72. Owens, F. N. and Isaacson, H. R. (1977). Rumen microbial yields: Factors influencing synthesis and bypass. Fed. Proc., 36, 198–202.Google Scholar
  73. Pichard, G. R. and Van Soest, P. J. (1977). Solubility of forage nitrogen fractions. Amer. Soc. Anim. Sci. Abstracts, 125.Google Scholar
  74. Pilgram, A. F., Gray, F. V., Weller, R. A. and Belling, C. B. (1970). Synthesis of microbial protein in the sheep’s rumen and the proportion of dietary nitrogen converted into microbial nitrogen. Brit. J. Nutr., 24, 589–598.CrossRefGoogle Scholar
  75. Potter, B. J., Walker, D. J. and Forrest, W. W. (1972). Changes in intraruminal function of sheep when drinking saline drinking water. Brit. J. Nutr., 27, 75–83.CrossRefGoogle Scholar
  76. Preston, T. R. (1972). Quantitative aspects of animal protein production from NPN in ruminants. Pages 1–10, In, ‘Tracer Studies on Non-protein Nitrogen for Ruminants’. Int.-Atomic Energy Agency, Vienna.Google Scholar
  77. Preston, T. R. (1976). Protein supplementation in intensive feeding situations for growth and lactation. Pages 129–133, In, ‘Reviews in Rural Science II’, T. M. Sutherland, J. R. McWilliam and R. A. Leng (Editors). Univ. New England Publ. Unit., Armidale, NSW, Australia.Google Scholar
  78. Purser, D. B. (1970). Nitrogen metabolism in the rumen. Microorganisms as a source of protein for the ruminant animal. J. Anim. Sci., 30, 988–1001.Google Scholar
  79. Roffler, R. E., Schwab, C. G. and Satter, L. D. (1976). Relation- ship between ruminai ammonia concentration and nonprotein nitrogen utilization by ruminants. III. Influence of intraruminal urea infusion on ruminai ammonia concentration. J. Dairy Sci., 59, 80–84.CrossRefGoogle Scholar
  80. Ryder, W. L., Hillman, D., and Huber, J. T. (1972). Effect of feeding urea on reproductive efficiency in Michigan dairy herd improvement association herds. J. Dairy Sci., 55, 1290–1294.CrossRefGoogle Scholar
  81. Satter, L. D. and Roffler, R. E. (1975). Nitrogen requirement and utilization in dairy cattle. J. Dairy Sci., 58, 1219–1237.CrossRefGoogle Scholar
  82. Satter, L. D. and Slyter, L. L. (1974). Effect of ammonia concentration on rumen microbial protein production in vitro. Brit. J. Nutr., 32, 199–208.CrossRefGoogle Scholar
  83. Satter, L. D., Whitlow, L. W. and Beardsley, G. L. (1977). Resistance of protein to rumen degradation and its significance to the dairy cow. Proc. Dist. Feed. Res. Council, 63–72.Google Scholar
  84. Scheifinger, C., Russel, N. and Chalupa, W. (1976). Degradation of amino acids by pure cultures of rumen bacteria. J. Anim. Sci., 43, 821–827.Google Scholar
  85. Schwab, C. G., Satter, L. D. and Clay, A. B. (1976). Response of lactating dairy cows to abomasal infusion of amino acids. J. Dairy Sci., 59, 1254–1270.CrossRefGoogle Scholar
  86. Smith, R. H. (1975). Nitrogen metabolism in the rumen and the composition and nutritive value of nitrogen compounds entering the duodenum. Pages 399–415, In, ‘Digestion and Metabolism in the Ruminant’, I. W. McDonald and A. C. I. Warner (Editors). Univ. New England Publ. Unit, Armidale, NSW, Australia.Google Scholar
  87. Sniffen, C. J. (1974). Nitrogen utilization as related to solubility of NPN and protein in feeds. Proc. Cornell Nutr. Conf., 12–18.Google Scholar
  88. Sutherland, T. M. (1976). The overall metabolism of nitrogen in the rumen. Pages 65–72, In, ‘Reviews in Rural Science II’, T. M. Sutherland, J. R. McWilliam and R. A. Leng (Editors). Univ. New England Publ. Unit, Armidale, NSW, Australia.Google Scholar
  89. Thomson, D. J., Beever, D. E., Mundell, D. C., Elderfield, M. L. and Harrison, D. G. (1975). The effect of altering dilution rate on the pattern of fermentation in the rumen. Proc. Nutr. Soc., 34, 111A.Google Scholar
  90. Virtanen, A. I. (1966). Milk production of cows on protein-free feed. Science, 153, 1603–1607.CrossRefGoogle Scholar
  91. Waldo, D. R., Smith, L. W. and Cox, E. L. (1972). Model of cellulose disappearance from the rumen. J. Dairy Sci., 55, 125–129.CrossRefGoogle Scholar
  92. Wohlt, J. E., Sniffen, C. J., Hoover, W. H., Johnson, L. L. and Walker, C. K. (1976). Nitrogen metabolism in wethers as affected by dietary protein solubility and amino acid profile. J. Anim. Sci., 42, 1280–1289.Google Scholar

Copyright information

© Plenum Press, New York 1978

Authors and Affiliations

  • William Chalupa
    • 1
  1. 1.School of Veterinary MedicineUniversity of PennsylvaniaKennett SquareUSA

Personalised recommendations