Advertisement

Fishes: Vision in Dim Light and Surrogate Senses

  • J. N. Lythgoe
Part of the NATO Advanced Study Institutes Series book series (NSSA, volume 18)

Abstract

The amount of information that the eye can gain from a light source ultimately depends upon the number of photons that the light carries and in dim light it is a famine of photons rather than inadequate sensitivity of the eye that limits the ability of the eye to detect fine detail, rapid movement, colour and contrast. The absorption of a single photon by a visual pigment molecule is sufficient to isomerise the chromophoric group of the molecule and thus to set in train the events that ultimately lead to the sensation of vision (for a review see Knowles and Dartnall, 1977). In man, at least, it requires the absorption of only 5 – 10 photons in an area covered by 500 rods to initiate a sensation of vision (Hecht, Schlaer and Pirenne, 1942). Ripps and Weale (1976) consider that the absorption of 1, 2 or 3 photons is probably sufficient to impart visual information although at this low level conclusions based on such information are not reliable.

Keywords

Hair Cell Lateral Line Electric Organ Mesopelagic Fish Flicker Fusion Frequency 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akoev, G.N., Ilyinski, & Zadan, P.M. (1976). Responses of Electroreceptors (Ampullae of Lorenzini) of skates to electric and magnetic fields. J. Comp. Physiol. 106: 127–136.CrossRefGoogle Scholar
  2. Badcock, J. (1970). The vertical distribution of mesopelagic fishes collected on the SOND Cruise. J. mar. biol. Assoc. U.K. 50: 1001–1044.CrossRefGoogle Scholar
  3. Bergeijk, W.A. von (1967). The evolution of vertebrate hearing. In: Contributions to sensory physiology, 2: 1–49. Neff, W.D. (Ed.), N.Y., Academic Press.Google Scholar
  4. Blaxter, J.H.S. (1970). Light: Fishes. In: Marine ecology, Vol. 1, Part 1 (Environmental factors) Edit, by Kinne, O., Wiley Interscience, Lond. pp. 213–320.Google Scholar
  5. Blest, A.D. & Land, M.F. (1977). The physiological optics of Dinopis subrufus L. Koch. A fish-lens in a spider. Proc. Roy. Soc. B. 196: 197–222.CrossRefGoogle Scholar
  6. Bone, Q. (1971). On the scabbard fish Aoanopus carbo. J. mar. biol. Assoc. U.K. 51: 219–226.CrossRefGoogle Scholar
  7. Chase, J. (1972). The role of vision in echo-locating bats. Ph.D. Thesis, Indiana University.Google Scholar
  8. Clarke, G.L. & Denton, E.J. (1962). Light and Animal Life. In: The Sea, Vol. I. ed. by M.N. Hill, pp. 456–468. N.Y., London, Interscience.Google Scholar
  9. Clarke, G.L. & Kelly, M.G. (1964). Variation in transparency and in bioluminescence on longitudinal transects in the western Indian Ocean. Bull. Inst. Monaco 64: 20 pp.Google Scholar
  10. Dartnall, H.J.A. (1975). “Assessing the fitness of visual pigments for their photic environment”. In: Vision in Fishes, (ed. by M.A. Ali ). New York & London, Plenum Press.Google Scholar
  11. de Burlet, H.M. (1934). Vergleichende Anatomie des statoacustischen Organs. In: “Handbuck der vergleichenden Anatomie der Wirbeltiere”. ( Bolk et Dlay Eds.), Vol. II, pp. 1293–1432. Munich, Urban & Schwarzenberg.Google Scholar
  12. Denton, E.J., Gilpin Brown, J.B. & Wright, P.G. (1972). The angular distribution of the light produced by some mesopelagic fish in relation to camouflage. Proc. roy. Soc. (B) 182: 145–158.CrossRefGoogle Scholar
  13. Denton, E.J. & Blaxter, J.H.S. (1976). The mechanical relationship between the clupeid swimbladder, inner ear and lateral line. J. mar. biol. Assoc. U.K. 56: 787–807.CrossRefGoogle Scholar
  14. Duntley, S.Q. (1963). Light in the Sea. J. opt. Soc. Amer. 53: 214–233.CrossRefGoogle Scholar
  15. Foxton, P. (1970). The vertical distribution of pelagic decapods (Crustacea: Natantia) collected on the SOND Cruise, 1965. II. The Penaeidea and general discussion. J. mar. biol. Assoc. U.K. 50: 961–1000.CrossRefGoogle Scholar
  16. Greenwood, P.H. (1976). A new and eyeless cobitid fish (Pisces, Cypriniformes) from the Zagros Mountains, Iran. J. Zool. Soc. Lond. 180: 129–137.CrossRefGoogle Scholar
  17. Harris, G.G. & Bergeijk, W.A. van (1962). Evidence that the lateral line organ responds to water displacements. J. acoust. Soc. Amer. 34: 1831–1841.CrossRefGoogle Scholar
  18. Hecht, S., Shlaer, S. & Pirenne, M.H. (1942). Energy, Quanta and Vision. J. gen. Physiol. 25: 819–840.PubMedCrossRefGoogle Scholar
  19. Jerlov, N.G. (1976). Marine Optics. Amsterdam, Oxford, N.Y., Elsevier.Google Scholar
  20. Kalmijn, A.J. (1974). The detection of electric fields from manmade and animate sources other than electric organs. In: Handbook of Sensory Physiology, III/3 ed. by A. Fessard, pp. 147–200. Springer-Verlag, Berlin.Google Scholar
  21. Kirschfeld, K. (1974). The absolute sensitivity of Lens and Compound Eyes. Z. Naturforsch. 29c: 592–596.Google Scholar
  22. Knowles, A. & Dartnall, H.J.A. (1977). Photobiology of Vision. In: The Eye, Vol. HB., Ed. by H. Davson., London & N.Y., Academic Press.Google Scholar
  23. Lissmann, H.W. (1958). On the function and evolution of electric organs in fish. J. exp. Biol. 35: 156–191.Google Scholar
  24. Lissmann, H.W. & Machin, K.E. (1958). The mechanism of object location in Gymnarckus nilotious and similar fish. J. exp. Biol. 35: 451–486.Google Scholar
  25. Locket, N.A. (1970). Deep sea fish retinas. British Med. Bull. 26: 107–111.Google Scholar
  26. Locket, N.A. (1971). Retinal structure in Platytroates apus9 a deep-sea fish with a pure rod fovea. J. mar. biol. Assoc. U.K. 51: 79–91.CrossRefGoogle Scholar
  27. Lythgoe, J.N. (1972). The adaptation of visual pigments to their photic environment. In: Handbook of Sensory Physiology, Vol. VII/1, pp. 566–603. Ed. by H.J.A. Dartnall, Berlin, Heidelberg, N.Y., Springer-Verlag.Google Scholar
  28. Marshall, N.B. (1971). Explorations in the life of fishes. Cambridge, Mass., Harvard.Google Scholar
  29. Münk, O. (1964). Ocular degeneration in deep-sea fishes. Galathea Rep. 8: 21.Google Scholar
  30. Münk, O. (1966). Ocular anatomy of some deep-sea teleosts. Dana Rep. 70: 1–62Google Scholar
  31. Münk, O. & Frederiksen, R.D. (1974). On the function of aphakik apertures in teleosts. Videnskabelige meddelelser fra Dansk Naturhistorisk forening 137: 65–94.Google Scholar
  32. Myrberg, A.A., Ha, S.A.J., Walewski, S. & Banbury, J.C. (1972). Effectiveness of acoustic signals in attracting epipelagic sharks to an underwater sound source. Bull. mar. Sci. 22: 926–949.Google Scholar
  33. Nicol, J.A.C., Arnott, H.J. & Best, C.G. (1973). Tapeta lucida in bony fishes (Actinopterygii): a survey. Can. J. zool. 51: 69–81.CrossRefGoogle Scholar
  34. Pitcher, T.J., Partridge, B.L. & Wardie, C.S. (1976). A blind fish can school. Science 194: 963–965.PubMedCrossRefGoogle Scholar
  35. Popper, A.N. (1970). Auditory capacities of the Mexican Blind cavefish (Astyanax jordani) and its Eyed Ancestor (Astyanax mexicanus). Animal behaviour 18: 552.CrossRefGoogle Scholar
  36. Popper, A.N. & Fay, R.R. (1973). Sound detection and processing by teleost fishes: a critical review. J. Acoust. Soc. Amer. 53: 1515–1529.CrossRefGoogle Scholar
  37. Pumphrey, R.J. (1950). Hearing. Symp. Soc. exp. Biol. 4: 3–18.Google Scholar
  38. Ripps, H. & Weale, R.A. (1976). The visual stimulus. In: The Eye, Vol. Ila., pp. 43–99, Ed. by H. Davson, N.Y. Academic Press.Google Scholar
  39. Roberts, B.L. & Russell, I.J. (1972). The activity of lateral line efferent neurones in stationary and swimming dogfish. J. exp. Biol. 57: 435–448.PubMedGoogle Scholar
  40. Rodieck, R.W. (1973). The Vertebrate Retina. San Francisco, W.H. Freeman & Co.Google Scholar
  41. Russell, I.J. (1976). Amphibian lateral line receptors. In: Frog Neurobiology, pp. 513–550. Ed. by Llinas R. & Precht, W. Berlin, Heidelberg, N.Y., Springer.Google Scholar
  42. Russell, I.J. & Sellick, P.M. (1976). Measurement of potassium and chloride ion concentrations in the cupulae of the lateral lines of Xenopus laevis. J. Physiol. 257: 245–255.PubMedGoogle Scholar
  43. Scheich, H. & Bullock, T.H. (1974). The detection of electric fields from electric organs. In: Handbook of Sensory Physiology Vol. Ill/3. Ed. by A. Fessard, pp. 201–256. Springer-Verlag, Berlin.Google Scholar
  44. Schwartz, E. (1971). Die ortung von waserarellen durch oberfiachenfische. Z. vergl. Physiol. 74: 64–80.CrossRefGoogle Scholar
  45. Schwartz, E. (1974). Lateral-line mechanoreceptors in fishes and amphibians. In: Handbook of Sensory Physiology, Vol. III/3. Ed. by A. Fessard, pp. 257–278. Berlin, Heidelberg, N.Y., Springer-Verlag.Google Scholar
  46. Thurston, M.H. (1976). The vertical distribution and diurnal migration of the crustacea Amphipoda collected during the SOND Cruise, 1965. II. The Hyperiidea and general discussion. J. mar. biol. Assoc. U.K. 56: 383–470.CrossRefGoogle Scholar
  47. Walls, G.L. (1942). The Vertebrate Eye and its adaptive radiation. N.Y., London, Hafner.Google Scholar
  48. Woods, J.D. (1971). Micro-oceanography. In: Underwater Science, Ed. Woods, J.D. pp. 291–317, Oxford.Google Scholar

Copyright information

© Plenum Press, New York 1978

Authors and Affiliations

  • J. N. Lythgoe
    • 1
  1. 1.MRC Vision UnitUniversity of SussexFalmer, BrightonUK

Personalised recommendations