Advertisement

Ecological Aspects of Electroreception

  • H. O. Schwassmann
Part of the NATO Advanced Study Institutes Series book series (NSSA, volume 18)

Abstract

Proper placement of electroreception as an ecosensory function within the array of the different sensory modalities seems difficult; however, some close relationship with vision can be established. Among the vertebrates, visual receptors and the many accessory dioptric and related structures are most highly developed in birds and fishes, but for obviously different reasons. In day-active birds, an eye of large diametre and a high ratio of retinal ganglion cells to cones throughout the retina permit a high degree of resolving power, perhaps at the cost of sensitivity, while the trend prevailing in fishes is towards maximal utilization of the little light available in most aquatic habitats. Here, correlated adaptive features are an enormous pupillary aperture, a relatively large spherical lens, and, in some deep-sea forms, a telescopic eye reminiscent of the tubular eyes of night-active owls. In certain situations, as an existence in very turbid waters, or while changing to a night-active life style, further refinement of the visual apparatus must have proved uneconomical, and other sensory systems were relied upon. Of these, electroreception became a highly effective mechanism for near-field orientation and communication in the aquatic medium.

Keywords

Ecological Aspect Electric Organ Electric Organ Discharge Electric Fish Stimulus Pulse 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bennett, M. V. L. (1971). Electric organs. In: W. S. Hoar and D. J. Randall, Eds., Fish Physiology 5: 347–491, Academic Press, New York, N.Y.Google Scholar
  2. Bullock, T. H. (1969). Species differences in effect of electro- receptor input on electric organ pacemakers and other aspects of behavior in electric fish. Brain Behav. Evol. 2: 85–118.CrossRefGoogle Scholar
  3. Bullock, T. H. and Chichibu, S. (1965). Further analysis of sensory coding in electroreceptors of electric fish. Proc. Natl. Acad. Sci. 54: 422–429.PubMedCrossRefGoogle Scholar
  4. Bullock, T. H., Hagiwara, S., Kusano, K., and Negishi, K. (1961). Evidence for a category of electroreceptors in the lateral line of gymnotid fishes. Science 134: 1426–1427.Google Scholar
  5. Bullock, T. H., Hamstra, R. H. Jr., and Scheich, H. (1972). The jamming avoidance response of high frequency electric fish. J. Comp. Physiol. Psychol. 77: 1–48.Google Scholar
  6. Cox, R. T. (1938). The electric eel at home. Bull. New York Zool. Soc. 41: 59–65.Google Scholar
  7. Fessard, A. Ed. (1974). Electroreceptors and other Specialized Receptors. Vol. III — 3 of Handbook of Sensory Physiology, Springer, Berlin.Google Scholar
  8. Fessard, A. and Szabo, T. (1974). Physiology of electroreceptors. In: Handbook of Sensory Physiology. Vol. Ill — 3, Electroreceptors and other Specialized Receptors in Lower Vertebrates, Fessard, A., ed., pp. 59–124. Springer, Berlin.Google Scholar
  9. Gaddis, P. K. (1977). Harmonization of discharge frequency of Eigenmannia virescens, Sternopygidae, (Pisces). Rev. Canad. Biol. 36: 317–320.PubMedGoogle Scholar
  10. Greenwood, P. H., Rosen, D. E., Weitzmann, S. H., and Myers, G. S. (1966). Phyletic studies of teleostean fishes, with a pro-visional classification of living forms. Bull. Am. Mus. Nat. Hist. 131: 339–455.Google Scholar
  11. Hagiwara, S., Kusano, K., and Negishi, K. (1962). Physiological properties of electroreceptors of some gymnotids. J. Neurophysiol. 25: 430–449.PubMedGoogle Scholar
  12. Hagiwara, S. and Morita, H. (1963). Coding mechanisms of electro- receptor fibers in some electric fish. J. Neurophysiol. 26: 551–567.PubMedGoogle Scholar
  13. Heiligenberg, W. and Bastian, J. (1978). Species specificity of electric organ discharges in sympatric gymnotoid fish of the Rio Negro and Solimoes, Brazil, in press.Google Scholar
  14. Hopkins, C. D. (1972). Sex differences in electric signalling in an electric fish. Science 176: 1035–1037.PubMedCrossRefGoogle Scholar
  15. Hopkins, C. D. (1974). Electric communication in the reproductive behavior of Stevnopygus macrurus (Gymnotoidei). Z. Tierpsychol. 35: 518–535.PubMedCrossRefGoogle Scholar
  16. Kalmijn, A. J. (1971). The electric sense of sharks and rays. J. Exp. Biol. 55: 371–383.PubMedGoogle Scholar
  17. Kalmijn, A. J. (1974). The detection of electric fields from inanimate and animate sources other than electric organs, pp. 147–200. In: Handbook of Sensory Physiology, Vol. III /3: Electroreceptors and Other Specialized Receptors in Lower Vertebrates, A. Fessard, ed., Springer, Berlin.Google Scholar
  18. Kellaway, P. (1946). The part played by electric fish in the early history of bioelectricity and electrotherapy. Bull. Hist. Med. 2: 112–137.Google Scholar
  19. Knoppel, H. A. (1970). Food of Central Amazonian fishes. Contributions to the nutrient ecology of Amazonian rainforest streams. Amazoniana 2: 257–352.Google Scholar
  20. Larimer, J. L. and MacDonald, J. A. (1968). Sensory feedback from electroreceptors to electromotor pacemaker centers in gymnotids. Am. J. Physiol. 214: 1253–1261.PubMedGoogle Scholar
  21. Lissmann, H. W. (1958). On the function and evolution of electric organs in fish. J. Exp. Biol. 35: 156–191.Google Scholar
  22. Lissmann, H. W. (1961). Ecological studies on gymnotids. In: Bio-electrogenesis, C. Chagas, Jr. and A. Paes de Carvalho, eds., Elsevier, Amsterdam.Google Scholar
  23. Lissmann, H. W. and Machin, K. E. (1958). The mechanism of object location in Gymnavchus nitotieus and similar fish. J. Exp. Biol. 35: 451–486.Google Scholar
  24. Lissmann, H. W. and Schwassmann, H. O. (1965). Activity rhythm of an electric fish, Gymnovhamphichthys hypostomus, Ellis. Z. Vergl. Physiol. 51: 153–171.CrossRefGoogle Scholar
  25. Machin, K. E. and Lissmann, H. W. (1960). The mode of operation of the electric receptors in Gymnavchus niloticus. J. Exp. Biol. 37: 801–811.Google Scholar
  26. Murray, R. W. (1960). Electrical sensitivity of the ampullae of Lorenzini. Nature, (London) 187: 957.CrossRefGoogle Scholar
  27. Murray, R. W. (1962). The response of the ampullae of Lorenzini of elasmobranchs to electrical stimulation. J. Exp. Biol. 39: 119–128.PubMedGoogle Scholar
  28. Parker, G. H. and Heusen, A. P. van (1917). The responses of the catfish, Ameirus nebutosus, to metallic and non-metallic rods. Am. J. Physiol. 44: 405–420.Google Scholar
  29. Ribeiro, A. de Miranda (1920). Peixes (excl. Characinidae). Commissao de Linhas Tel. Estr. de Matto Grosso ao Amazonas. Zool. Hist. Nat. Ann. 58: 1–15Google Scholar
  30. Romer, A. S. (1966). Vertebrate Palaeontology. Univ. Chicago Press, Chicago, 111. 3rd. ed.Google Scholar
  31. Scheich, H. and Bullock, T. H. (1974). The detection of electric fields from electric organs, pp. 201–256. In: Handbook of Sensory Physiology, Vol. III /3: Electroreceptors and Other Specialized Receptors in Lower Vertebrates, A. Fessard, ed. Springer, Berlin.Google Scholar
  32. Schwassmann, H. O. (1971). Circadian activity patterns in gymnotid electric fish. In: Biochronometry, M. Menaker, ed. pp. 186– 199, Natl. Acad. Sciences, Washington, D.C.Google Scholar
  33. Schwassmann, H. O. (1976). Ecology and taxonomic status of different geographic populations of Gyrrmorhamphiohthy s hypostomus Ellis (Pisces, Cypriniformes, Gymnotoidei). Biotropica 8: 25–40.CrossRefGoogle Scholar
  34. Schwassmann, H. O. (1978). Activity rhythms in gymnotoid electric fish. In: Rhythmic Activities in Fishes, J. Thorpe, ed. Academic Press, New York, N.Y. in press.Google Scholar
  35. Steinbach, A. B. (1970). Diurnal movements and discharge characteristics of gymnotid fishes in the Rio Negro, Brazil. Biol. Bull. Woods Hole 138: 200–210.CrossRefGoogle Scholar
  36. Stensiö, E. A. (1927). The Downtonian and Devonian vertebrates of Spitzbergen. I: Family Cephalaspidae. Skr. om Svalbard og Nordishavet 12, pp. 391.Google Scholar
  37. Watanabe, A. and Takeda, K. (1963). The change of discharge frequency by A. C. Stimulus in a weak electric fish. J. Exp. Biol. 40: 57–66.Google Scholar

Copyright information

© Plenum Press, New York 1978

Authors and Affiliations

  • H. O. Schwassmann
    • 1
  1. 1.Department of ZoologyUniversity of FloridaGainesvilleUSA

Personalised recommendations