Advertisement

Photoreception

  • M. A. Ali
  • M. Anctil
  • L. Cervetto
Part of the NATO Advanced Study Institutes Series book series (NSSA, volume 18)

Abstract

Sensitivity to solar radiation is a widespread phenomenon among living forms and is commonly expressed in phototropic, phototactic or visual responses. Whenever sufficiently detailed investigations have been made, a molecular mechanism involving photolabile pigments and associated membrane specialisations was found to mediate this photosensitivity. We find this applicable to the bacteriorhodopsin of some bacteria (Oesterhelt and Stoeckenius, 1971), the flavin-type and carotenoid pigments of the phototropic fungi (Wolken, 1975), the chloroplast-based chlorophyl of green plants and, of course, the photopigments of animal photoreceptors. Photoreception, especially vision, has a prominent role among the sensory modalities used by many animal forms to provide information on the Nature of the environment. It is reasonable to assert that, in the most organised visual systems, the sensory information contained in the visual messages is one of the richest, both in quality and detail.

Keywords

Spectral Sensitivity Outer Segment Visual Pigment Cone Outer Segment Stizostedion Vitreum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adrian, E.D. (1928). The basis of sensation. Christophers, London. Ali, M.A. (1971). Les réponses rétinomotricess caractères et mécanismes. Vision Res. 11: 1225–1288.Google Scholar
  2. Ali, M.A. (1975). Retinomotor responses. In: Vision in Fishes: New Approaches to Research, p. 313–355, ed. M.A. Ali. Plenum Press, New York.Google Scholar
  3. Ali, M.A. and Anctil, M. (1976). Retinas of Fishes: An Atlas. Springer-Verlag, Heidelberg. 284 p.Google Scholar
  4. Ali, M.A. and Anctil, M. (1977). Retinal structure and function of the walleye CStizostedion vitreum) and sauger (S. oanadense). J. Fish. Res. Board Can. 34: 1467–1474.Google Scholar
  5. Ali, M.A. and Crouzy, R. (1968). Action spectrum and quantal thresholds of retinomotor responses in the brook trout, Salveli- nus fontinalis (Mitchill). Z. verg. Physiol. 59: 86–89.Google Scholar
  6. Ali, M.A. & Hoar, W.S. (1959). Retinal responses of pink salmon associated with its downstream migration. Nature 184: 106–107.PubMedGoogle Scholar
  7. Ali, M.A. & Muntz, W.R.A. (1975). Electroretinography as a tool for studying fish vision. In: Vision in Fishes, New Approaches to Research, p. 159–167, ed. M.A. Ali. Plenum Press, New York.Google Scholar
  8. Ali, M.A., Ryder, R.A. & Anetil, M. (1977). Photoreceptors and visual pigments as related to behavioral responses and preferred habitats of perches (Peroa spp.) and pikeperches (Stizostedion spp.) J. Fish. Res. Board Can. 34: 1475–1480.Google Scholar
  9. Allen, D.M. & McFarland, W.N. (1973).. The effect of temperature on rhodopsin-porphyropsin ratios in a fish. Vision Res. 13: 1303–1309.Google Scholar
  10. Allen, D.M., McFarland, W.N., Münz, F.W. & Poston, H.A. (1973). Changes in the visual pigments of trout. Can. J. Zool. 51: 901–914.PubMedGoogle Scholar
  11. Anetil, M. (1975). Prospects in the study of interrelationships between vision and bioluminescence. In: Vision in Fishes: New Approaches in Research, p. 657–671, ed. M.A. Ali. Plenum Press, New York.Google Scholar
  12. Anetil, M. & Ali, M.A. (1970). Retina of Exocoetus volitans and Fodiator acutus ( Pisces Exocoetidae ). Copeia No. 1, 43–48.Google Scholar
  13. Anetil, M. & Ali, M.A. (1976). Cone droplets of mitochondrial origin in the retina of Fundulus hetevoolitus (Pisces: Cyprinodontidae). Zoomorphol. 84: 103–111.Google Scholar
  14. Ashmore, J.F. & Falk, G. (1976). Absolute sensitivity of rod bipolar cells in a dark-adapted retina. Nature 263: 248–249.PubMedGoogle Scholar
  15. Autrum, H. (1968). Colour vision in man and animals. Naturwiss. 55: 10–18.PubMedGoogle Scholar
  16. Backus, R.H., Craddock, J.E., Haedrich, R.L., Shores, D.L., Teal, J.M., Wing, A.S., Mead, G.M. & Clarke, W.D. (1968). Ceratoseopelus maderensis: peculiar sound-scattering layer identified with this myctophid fish. Science 160: 991–993.PubMedGoogle Scholar
  17. Barham, E.G. (1970). Deep-sea fishes: lethargy and vertical orientation. In: Proc. Intern. Symp. Biol. Sound Scattering in the Ocean, p. 100–118, ed. G.B. Farquhar. Maury Center for Ocean Science, Washington.Google Scholar
  18. Baylor, D.A. & Fettiplace, R. (1977). Transmission from photoreceptors to ganglion cells in turtle retina. J. Physiol. Lond. 271: 391–424.PubMedGoogle Scholar
  19. Baylor, D.A. & Fuortes, M.G.F. (1970). Electrical responses of single cones in the retina of the turtle. J. Physiol. 207: 77–92.PubMedGoogle Scholar
  20. Baylor, D.A. & Hodgkin, A.L. (1973). Detection and resolution of visual stimuli by turtle photoreceptors. J. Physiol. Lond. 234: 163–198.PubMedGoogle Scholar
  21. Baylor, D.A. & Hodgkin, A.L. (1974). Changes in time scale and sensitivity in turtle photoreceptors. J. Physiol. 242: 729–758.PubMedGoogle Scholar
  22. Baylor, D.A., Hodgkin, A.L. & Lamb, T.D. (1974a). The electrical response of turtle cones to flashes and steps of light. J. Physiol. 242: 686–727.Google Scholar
  23. Beatty, I.D. (1975). Rhodopsin - Porphysopsin changes in paired-pigment fishes. In: Vision in Fishes: New Approaches to Research, p. 635–644, ed. M.A. Ali. Plenum Press, New York.Google Scholar
  24. Berger, E. P. (1966). On the mitochondrial origin of oil drops in the retinal double cone inner segments. J. Ultrastruct. Bes. 14: 143–157.Google Scholar
  25. Blaxter, J.H.S. (1970). Light. In: Marine Ecology, p. 213–285, ed. O. Kinne. Wiley, London. Blaxter, J.H.S. (ed.) ( 1974 ). The Early Life History of Fish. Springer-Verlag, New York.Google Scholar
  26. Blaxter, J.H.S. (1975). The eyes of larval fish. In:Vision in Fishes: New Approaches in Research, p. 427–443, ed. M.A. Ali. Plenum Press, New York.Google Scholar
  27. Boden, E.P., Kampa, E.M. (1967). The influence of natural light on the vertical migrations of animal community in the sea. Symp. Zool. Soc. Lond. 19: 15–26.Google Scholar
  28. Borwein, B. & Hollenberg, M.J. (1973). The photoreceptors of the four-eyed fish, Anableps anableps L. J. Morphol. 140: 405–442.Google Scholar
  29. Brauer, A. (1908). BLe Tiefseefische. 11. Anatomische teil. B. Augen, 266p. Wissenchaftliche ergebnisse der Deutschen Tiefsee-expedition auf dem Dampier “Valdivia” 1898–1899, Bd. 15. Gustav-Fisher, Jena.Google Scholar
  30. Bridges, C.D.B. (1972). The rhodopsin-porphyropsin visual system. In: Handbook of Sensory Physiology, Vol. VII/1, Photochemistry of Vision, p. 417–480, ed. H.J.A. Lärtnall. Springer-Verlag, New York.Google Scholar
  31. Bridges, C.D.B. & Delisle, C.E. (1974). Evolution of visual pigments. Exp. Eye Res. 18: 323–332.PubMedGoogle Scholar
  32. Burnside, B. (1976). Microtubules and actin filaments in teleost visual cone elongation and contraction. J. Supramol. Struct. 5: 257–275.PubMedGoogle Scholar
  33. Case, JJ., Warner, J., Barnes, A.T. &Lowenstine, M. (1977). Bioluminescence of lantern fish CMyctophidae) in response to changes in light intensity. Nature 265: 179–181.Google Scholar
  34. Cervetto, L. (1973). Influence of sodium potassium and chloride ions on the intracellular responses of turtle photoreceptors. Nature, 241: 401–403.PubMedGoogle Scholar
  35. Cervetto, L., Pasino, E. & Torre, V. (1977). Electrical responses of rods in the retina of Bufo marinus. J. Physiol. 267: 17–51.PubMedGoogle Scholar
  36. Chun, C. (1903). Deutsche Tiefsee-Expedition “Valdivia”. Verh. Dtsch. Zool. Ges. 13: 67. GustavFiseher, Jena, 1910-1915. English translation by Israel Program for Scientific Translations Jersalem, 1975.Google Scholar
  37. Church, P. (1970). Bioluminescence: the sea’s living light. Oceans Mag. 3: 20–29.Google Scholar
  38. Clarke, W.D. (1963). Function of bioluminescence in mesopelagic organisms. Nature 198: 1244–1246.Google Scholar
  39. Baylor, D.A., Hodgkin, A.L. & Lamb, T.D. (1974 b). Reconstruction of the electrical responses of turtle cones to flashes and steps of light. J. Physiol. 242: 759–791.Google Scholar
  40. Crescitelli, F. (1972). The visual cells and visual pigments of the vertebrate eye. In: Handbook of Sensory Physiology, Vol. VII/1, Photochemistry of Vision, p. 245–263, ed. H.J.A. Dartnall. Springer-Verlag, New York.Google Scholar
  41. Danon, A. & Stoeckenius, W. (1974). Photophosphorylation in Halobacterium halobium. Proc. Nat. Acad. Sci. U.S.A. 71: 1234–1238.Google Scholar
  42. Denton, E.J., Gilpin-Brown, J.B. & Wright, P.G. (1972). The angular distribution of the light produced by some mesopelagic fish in relation to their camouflage. Proc. R. Soc. Lond. B. 182: 145–158.Google Scholar
  43. Denton, E.J. & Nicol, J.A.C. (1966). A survey of reflectivity in silvery teleosts. J. Mar. Biol. Ass. U.K. 46: 685–722.Google Scholar
  44. Denton, E.J. & Warren, F.J. (1957). The photosensitive pigments in the retinae of the deep-sea fish. J. Mar. Biol. Ass. U.K. 36: 651–662.Google Scholar
  45. Eakin, R.M. (1972). Structure of invertebrate photoreceptors. In: Handbook of Sensory Physiology, Vol. VII/1, Photochemistry of Vision, p. 625–684, ed. H.J.A. Dartnall. Springer-Verlag, New York.Google Scholar
  46. Fain, G.L. (1976). Sensitivity of toad rods: dependence on wave-length and background illumination. J. Physiol. 261: 71–101.PubMedGoogle Scholar
  47. Fernandez, H.R. & Tsui, F.I. (1976). Photopigment and spectral sensitivity in the bioluminescent fish, Porichthys notatus. Mar. Biol. 34: 101–107.Google Scholar
  48. Fineran, B.H. & Nicol, J.A.C. (1976). Novel cones in the retina of the anchovy (Anchoa). J. Ultrastruct. Res. 54: 295–303.Google Scholar
  49. Fineran, B.H. & Nicol, J.A.C. (1977). Studies on the eyes of anchovies Anohoa mitchelli and A. hepsetus (Engraulidae) with particular reference to the pigment epithelium. Phil. Trans. R. Soc. Lond. B. 276: 321–350.Google Scholar
  50. Fuortes, M.G.F. (1959). Initiation of impulses in visual cells of Limulus. J. Physiol. 148: 14–28.PubMedGoogle Scholar
  51. Fuortes, M.F.G. (ed.) (1972). Handbook of Sensory Physiology. Vol, VII/2: Physiology of Photoreceptor organs. Springer- Verlag, New York.Google Scholar
  52. Goldsmith, T.H. (1972). The natural history of invertebrate visual pigments. In: Handbook of Sensory Physiology, Vol. VII/1, Photochemistry of Vision, p. 685–719, ed. H.J.A. Dartnall. Springer-Verlag, New York.Google Scholar
  53. Hagins, W.A. (1972). The visual process: excitatory mechanisms in the primary receptor cells. Ann. Rev. Biophys. Bioeng. 1, 131–158.Google Scholar
  54. Hartline, H.K. (1934). Intensity and duration in the excitation of single photoreceptor units. J. Cell. Comp. Physiol. 5: 229–247.Google Scholar
  55. Hartline, H.K., Wagner, H.G. & MacNichol, E.F. (1952). The perispheral origin of nervous activity in the visual system. Cold Spring Harb. Symp. Quant. Biol. 17: 125–141.PubMedGoogle Scholar
  56. Hodgkin. A.L. & Bryan, P.M. (1977). Internal recording of the early receptor potential in turtle cones. J. Physiol. 267: 737–766.Google Scholar
  57. Horridge, G.A. (1968). Pigment movement and the crystalline threads of the firefly eye. Nature 218: 778–779.PubMedGoogle Scholar
  58. Horridge, G.A. (1969). The eye of the firefly Photuris. Proc. R. Soc. Series B. 171: 445–463.Google Scholar
  59. Kleinholz, L. (1959). Purines and pteridines fron the reflecting pigment of the arthropod retina. Biol. Bull Mar. Biol. Lab. Woods Hole 116: 125–135.Google Scholar
  60. Kobayashi, H. (1962). A comparative study on electroretinogram in fish, with special reference to ecological aspects. J. Shimonoseki Coll. Fish. 11: 407–538.Google Scholar
  61. Korenbrot, J.I. & Cone, R.A. (1972). Dark ionic flux and the effects of light in isolated rod outer segments. J. Gen. Physiol. 60: 20–45.PubMedGoogle Scholar
  62. Krasne, F.B. & Lawrence, P.A. (1966). Structure of the photoreceptors in the compound eyespots of Branohiomma vesioulosum. J. Cell. Sei. 11: 239–248.Google Scholar
  63. Land, M.F. (1966). A multilayer interference reflector in the eye of the scallop (Pecten maximus). J. Exp. Biol. 45: 433–447.Google Scholar
  64. Land, M.F. (1968). Functional aspects of the optical and retinal organisation of the mollusc eye. Symp. Zool. Soc. Lond. 23: 75–96.Google Scholar
  65. Land, M.F. (1976). Superposition images are formed by reflection in the eyes of some oceanic decapod crustacea. Nature 263: 764–765.PubMedGoogle Scholar
  66. Lawry, J.V. (1974). Lantern fish compare downwelling light and bioluminescence. Nature 247: 155–157.Google Scholar
  67. Liebman, P.A. (1972). Microspectrophotometry of photoreceptors. In: Handbook of Sensory Physiology, Vol. VII/1, Photochemistry of Vision p. 481–528, ed. H.J.A. Dartnall. Springer-Verlag, New York.Google Scholar
  68. Liebman, P.A. & Granda, A.M. (1971). Microspectrophotometric measurements of visual pigments in two species of turtle, Pseudemys scripta and Chelonia my das. Vision Res. 11: 105–114.PubMedGoogle Scholar
  69. Locket, N.A. (1970). Deep-sea fish retinas. Brit. Med. Bull. 26: 107–111.PubMedGoogle Scholar
  70. Lythgoe, J.N. (1972). The adaptation of visual pigments to the photic environment. In: Handbook of Sensory Physiology VII/1, Photochemistry of Vision, p. 566–603, ed. H.J.A. Dartnall. Springer-Verlag, New York.Google Scholar
  71. Lythgoe, J.N. (1975). The ecology function and phylogeny of iridescent multilayers in fish corneas. In: Light as an Ecological Factor: II, 16th Symposium Brit. Ecol. Soc. 26–28 Mar. 1974. Eds. G.C. Evans, R. Bainbridge and O. Rackham. Blackwell, Oxford.Google Scholar
  72. MacNichol, E.F. Jr., Feinberg, R. & Harosi, F.I. (1973). Colour discrimination processes in the retina. Proc. 2nd Congress Internat. Colour Ass. Colour 73: 191–251.Google Scholar
  73. Adam Hilger, London. McFarland, W.N. & Allen, D.M. (1977). The effect of extrinsic factors on two distinctive rhodopsin-porohyropsin systems. Can. J. Zool. 55: 1000–1009.Google Scholar
  74. McFarland, W.N. & Münz, F.W. (1975a). The photic environment of clear tropical seas during the day. Vision Res. 15: 1063–1070.PubMedGoogle Scholar
  75. McFarland, W.N. & Munz, F.W. (1975b). The evolution of photopic visual pigments in fishes. Vision Res. 15: 1071–1080.PubMedGoogle Scholar
  76. Marks, W.B., Dobelle, W.H. & MacNichol, E.F. (1964). Visual pigments of single primate cones. Science, 143: 1181–1183.PubMedGoogle Scholar
  77. Matthiews, B.H.C. (1931). The response of a single end organ. J. Physiol., Lond. 71: 64–110.Google Scholar
  78. Messenger, J.B. (1977). Evidence that Octopus is colour blind. J. Exp. Biol. 70: 49–56.Google Scholar
  79. Messenger, J.B., Wilson, A.P. & Hedge, A. (1973). Some evidence for colour-blindness in Octopus. J. Exp. Biol. 59: 77–94.PubMedGoogle Scholar
  80. Miller, W.H. (1976). Optical guiding by photoreceptor cells. Fed. Proc. 35: 37–43.PubMedGoogle Scholar
  81. Miller, W.H. & Snyder, A.W. (1977). The tiered vertebrate retina. Vision Res. 17: 239–255.PubMedGoogle Scholar
  82. Millott, N. (1968). The dermal light sense. Symp. Zool. Soc. Lond. 23: 1–36.Google Scholar
  83. Münk, O. (1966). Ocular anatomy of some deep-sea teleosts. Dana rep. 70: 1–62.Google Scholar
  84. Müntz, W.R.A. (1972). Inert absorbing and reflecting pigments. In: Handbook of Sensory Physiology, Vol. VII/1, Photochemistry of Vision, p. 529–565, ed. H.J.A. Dartnall. Springer-Verlag, New York.Google Scholar
  85. Müntz, W.R.A. (1975). Visual pigments and their environment. In: Vision in Fishes: New Approaches in Research, p. 565–578, ed. M.A. Ali. Plenum Press, New York.Google Scholar
  86. Müntz, W.R.A. (1976). On yellow lenses -in mesopelagic animals. J. Mar. Biol. Assoc. U.K. 56: 963–976.Google Scholar
  87. Munz, F.W. & McFarland, W.N. (1973). The significance of spectral position in the rhodopsins of tropical marine fishes. Vision Res. 13: 1829–1874.PubMedGoogle Scholar
  88. Munz, F.W. & McFarland, W.N. (1975). Presumptive cone pigments extracted from tropical marine fishes. Vision Res. 15: 1045–1062.PubMedGoogle Scholar
  89. Newell, P.F. & Newell, G.E. (1968). The eye of the slug, Agviolimax reticulatus (Mllll). Symp. Zool. Soc. Lond. 23: 97–111.Google Scholar
  90. Nicol, J.A.C. (1950). Responses of Branchiomma vesiculosum (Montagu) to photic stimulation. J. Mar. Biol. Assoc. U.K. 29: 303–320.Google Scholar
  91. Nicol, J.A.C. (1967). The luminescence of fishes. Symp. Zool. Soc. Lond. 19: 27–55.Google Scholar
  92. Niwa, H. & Tamura, T. (1969). Investigation of fish vision by means of S-potential. II. Spectral sensitivity and colour vision. Rev. Can. Biol. 28: 79–88.PubMedGoogle Scholar
  93. O’Day, W.T. & Fernandez, H.R. (1974). Aristostomias sointillens (Malacosteidae): a deep-sea fish with visual pigments apparently adapted to its own bioluminescence. Vision Res. 14: 545–550.PubMedGoogle Scholar
  94. O’Day, W.T. & Fernandez, H.R. (1976). Vision in the lanternfish Stenobvaohius leuoopsarus (Myctophidae). Mar. Biol. 37: 187–195.Google Scholar
  95. Oesterhelt, D. & Stoeckenius, W. (1971). Rhodopsin-like protein from the purple membrane of Halobaeterivm hatobium. Nature New Biology 233: 149–152.PubMedGoogle Scholar
  96. Raynauld, J.-P. (1975). A model for the ganglionic receptive field organisation. In: Vision in Fishes: New Approaches in Research, p. 91–98, ed. M.A. Ali. Plenum Press, New York.Google Scholar
  97. Rodieck, R.W. (1973). The Vertebrate Retina: Principles of Structure and Function. Freeman, San Francisco.Google Scholar
  98. Ryder, R.A. (1977). Effects of ambient light variations on behavior of yearling subadult, and adult walleyes (Stizostedion vitrevm vitreim). J. Fish. Res. Board Can. 34: 1481–1491.Google Scholar
  99. Schwanzara, S.A. (1967). The visual pigments of freshwater fishes. Vision Res. 7: 121–148.PubMedGoogle Scholar
  100. Scott, S. & Mote, M.I. (1974). Spectral sensitivity in some marine crustacea. Vision Res. 14: 659–663.PubMedGoogle Scholar
  101. Somiya, H. (1976). Functional significance of the yellow lens in the eyes of Argyropelecus affinis. Mar. Biol. 34: 93–99.Google Scholar
  102. Steven, D.M. (1963). The dermal light sense. Biol. Rev. 38: 204–240.PubMedGoogle Scholar
  103. Svaetichin, G.K., Negishi, K. & Fatehchand, R. (1965). Cellular mechanism of a Young-Hering visual system. In: Colour Vision, Physiology and Experimental Psychology. Little, Brown, Boston, Mass. (Ciba Found. Symp. Colour Vision p. 178–207 ).Google Scholar
  104. Tett, P.B. & Kelly, M.G. (1973). Marine bioluminescence. Oceanogr. Mar. Biol. Ann. Rev. 11: 89–173.Google Scholar
  105. Tomita, T. (1965). Electrophysiological study of the mechanism subserving color coding in the fish retina. Cold Spring Harb. Symp. Quant. Biol. 30: 559–566.PubMedGoogle Scholar
  106. Wald, G. & Rayport, S. (1977). Vision in annelid worms. Science 196: 1434–1439.PubMedGoogle Scholar
  107. Wales, W. (1975). Extraretinal photosensitivity in fish larvae. In: Vision in Fishes: New Approaches to Research, p. 445–450, ed. M.A. Ali. Plenum Press, New York.Google Scholar
  108. Walls, G.L. (1942). The vertebrate eye and its adaptive radiation. Cranbrook Institute of Science Bull. 19: 785 p.Google Scholar
  109. Waterman, T.H. (1975). Natural polarized light and e-vector discrimination by vertebrates. In: Light as an Ecological Factor II, 16th Symposium of Brit. Ecol. Soc., 26–28 March 1974. Eds. G.C. Evans., R. Bainbridge and O. Rackham. Blackwell, Oxford.Google Scholar
  110. Waterman, T.H. & Hashimoto, H. (1974). E-vector discrimination by the goldfish optic tectum. J. Comp. Physiol. 95: 1–12.Google Scholar
  111. Wolken, J.J. (1975). Photoprocesses, Photoreceptors and Evolution. Academic Press, New York. 317 p.Google Scholar
  112. Yamamoto, T., Tasaki, K., Sugaware, Y. & Tonosaki, A. (1965). Fine structure of the octopus retina. J. Cell. Biol. 25: 345–359.PubMedGoogle Scholar
  113. Young, R.E. (1973). Information feedback from photophores and ventral countershading in midwater squid. Pacif. Sci. 27: 1–7.Google Scholar
  114. Young, R.E. (1975). Transitory eye shapes and the vertical distribution of two midwater squids. Pacif. Sci. 29: 243–255.Google Scholar
  115. Young, R.E. (1977). Ventral bioluminescent countershading in midwater cephalopods. Symp. Zool. Soc. Lond. 38: 161–190.Google Scholar
  116. Young, R.E. & Roper, F.E. (1976). Bioluminescent countershading in midwater animals: evidence from living squid. Science 191: 1046–1048.PubMedGoogle Scholar
  117. Young, R.E. & Roper, F.E. (1977). Intensity regulation of bioluminescence during countershading in living midwater animals. Fish. Bull. 75: 239–252.Google Scholar
  118. Zyznar, E.S. & Ali, M.A. (1975). An interpretative study of the organization of the visual cells and tapetum lucidum of Stizostedion. Can. J. Zool. 53: 180–196.Google Scholar
  119. Zyznar, E.S. & Nicol, J.A.C. (1971). Ocular reflecting pigments of some malacostraca. J. Exp. Biol. Ecol. 6: 235–248.Google Scholar
  120. Zyznar, E.S. & Nicol, J.A.C. (1973). Reflecting materials in the eyes of three teleosts, Orthopristes chrysopterusj Ibrosoma cepedianion and Anohoa mitchilti. Proc. R. Soc. Lond. 184: 15–27.Google Scholar

Copyright information

© Plenum Press, New York 1978

Authors and Affiliations

  • M. A. Ali
    • 1
    • 2
  • M. Anctil
    • 1
    • 2
  • L. Cervetto
    • 1
    • 2
  1. 1.Dépt. Biol.Univ. MontréalMontréalCanada
  2. 2.Lab. di NeurofisiologiaCNRPisaItaly

Personalised recommendations