Advertisement

The Adaptive Radiation of Proprioceptors

  • W. Wales
Part of the NATO Advanced Study Institutes Series book series (NSSA, volume 18)

Abstract

The term “proprioception”, coined by Sherrington (1906) has become an accepted and frequently used word in the vocabulary of sensory physiologists. However its popular use has been accompanied by a loss of precision in its meaning. It is, therefore not inappropriate in 1977 to look again at the definition of proprioception as it was originally conceived.

Keywords

Sensory Cell Adaptive Radiation Decapod Crustacean Canal Cell Chordotonal Organ 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alexandrowicz, J.S. (1972). The comparative anatomy of leg proprioceptors in some decapod crustacea. J. mar. biol. Assoc. U.K. 52: 605–634.CrossRefGoogle Scholar
  2. Angaut-Petit, D., Clarac, F. and Vedel, J.P. (1974). Excitatory and inhibitory innervation of a crustacean muscle associated with a sensory organ. Brain Res. 70: 148–152.PubMedCrossRefGoogle Scholar
  3. Barnes, W.J.P., Spirito, C.P. and Evoy, W.H. (1972). Nervous control of walking in the crab Cardisorra quanhumi. II Role of resistance reflexes in walking. Z. Vgl. Physiol. 76: 16–31. Barth, G. (1934). Untersuchungen Uber Myochordotonalorgane bei Dekapoden Crustacean. Z. Wiss. Zool. 145: 576–624.Google Scholar
  4. Bassler, U. (1958). Versuche zué Orientierund der Stechmucken: Die Schwarmbildung und die Bedeutung des Johnstonschen Organs. Z. Vgl. Physiol. 41: 300–330.CrossRefGoogle Scholar
  5. Bullock, T.H. and Horridge, G.A. (1965). Structure and function in the nervous system of invertebrates. Freeman, New York.Google Scholar
  6. Burke, W. (1954). An organ for proprioception and vibration sense in Carcinus maenas (L). J. Exp. Biol. 31: 127–137.Google Scholar
  7. Burkhardt, D. and Gewecke, M. (1966). Mechanoreception in Arthropoda: the chain from stimulus to behaviour pattern. Cold spring Harbor Symp. Quant. Biol. 30: 601–614.CrossRefGoogle Scholar
  8. Burkhardt, D. and Schneider, G. (1957). Die Antennen von Caliphora als Anzeiger der Fluggeschwingigkeit. Z. Naturforsch. Teil. B. 12: 139–143.Google Scholar
  9. Bush, B.M.H. (1962a). Peripheral reflex inhibition in the claw of the crab, Caroinus maenas (L) J. Exp. Biol. 39: 71–88.PubMedGoogle Scholar
  10. Bush, B.M.H. (1962b). Proprioceptive reflexes in the legs of Caroinus maenas (L). J. Exp. Biol. 39: 89–105.PubMedGoogle Scholar
  11. Bush, B.M.H. (1963). A comparative study of certain limb reflexes in decapod crustaceans. Comp. Biochem. Physiol. 10: 273–290.PubMedCrossRefGoogle Scholar
  12. Bush, B.M.H. (1965a). Proprioception by chordotonal organs in the merocarpopodite and carpo-popodite joints of Caroinus maenas legs. Comp. Biochem. Physiol. 14: 185–199.PubMedCrossRefGoogle Scholar
  13. Bush, B.M.H. (1965b). Proprioception by the coxo—basal chordotonal organ, CB, in legs of the crab, Caroinus maenas. J. Exp. Biol. 42: 285–297.PubMedGoogle Scholar
  14. Bush, B.M.H. (1965c). Leg reflexes from chordotonal organs in the crab, Caroinus maenas. Comp. Biochem. Physiol. 15: 567–587.PubMedCrossRefGoogle Scholar
  15. Clarac, F. (1968a). Proprioceptor anatomy of the ischio-meropodite region in legs of the crab Caroinus mediterraneus C. Z. Vgl. Physiol. 61: 203–223.CrossRefGoogle Scholar
  16. Clarac, F. (1968b). Proprioception by the ischio-meropodite region in legs of the crab, Caroinus mediterraneus C. Z. Vgl. Physiol. 61: 224–245.CrossRefGoogle Scholar
  17. Clarac, F. (1976). Crustacean cuticular stress detectors. In: Structure and Function of Proprioceptors in the Invertebrates, Ed. P.G. Mill. Chapman & Hall, London.Google Scholar
  18. Clarac, F. and Wales, W. (1970). Controle sensoriel des muscles élévateurs au cours de la marche et de l’autotomie chez certains crustaces, decapods. C.R. Hebd. Seances Acad. Sei. D. 271: 2163–2166.Google Scholar
  19. Clarac, F., Wales, W. and Laverack, M.S. (1971). Stress detection at the autotomy plane in the decapod crustacea. II. The function of receptors associated with the cuticle of the basi-ischiopodite. Z. Vgl. Physiol, 73: 383–407.CrossRefGoogle Scholar
  20. Evoy, W.H. and Cohen, M.J. (1969). Sensory and motor interaction of the locomotor reflexes of crabs. J. Exp. Biol. 51: 151–169.PubMedGoogle Scholar
  21. Ferrero, E. and Wales, W. (1976). The mandibular common inhibitor system. I. Axon topography and the nature of coupling. J. Comp. Physiol. 109: 123–134.CrossRefGoogle Scholar
  22. Graber, V. (1882). Dier Chordotonalen Sinnesorgan und das Gehör der Insekten. Arch. Mikrosk. Anat. Entw. Mech. 20: 506–640.CrossRefGoogle Scholar
  23. Hartman, H.B. and Austin, W.D. (1972). Proprioceptor organs in thé antennae of decapod Crustacea. 1. Physiology of a chordotonal organ spanning two joints in the spiny lobster Panulirus interruptus (Randall). J. Comp. Physiol. 81: 187–202.CrossRefGoogle Scholar
  24. Hartman, H.B. and Boettiger, E.G. (1967). The functional organization of the propus-dactylus organ in Canoer inoratus Say. Comp. Biochem. Physiol. 22: 651–663.CrossRefGoogle Scholar
  25. Hess, W.N. (1917). The chordotonal organs and pleural discs of cerambycid larvae. Ann. Entomol. Soc. Am. 10: 63–74.Google Scholar
  26. Hollick, F.S.J. (1940). The flight of the dipterous fly Muscina stabitans Fallen. Philos. Trans. R. Soc. Lond. B. Biol. Sei. 230: 357–390.CrossRefGoogle Scholar
  27. Horch, K. (1971). An organ for hearing and vibration sense in the ghost crab Ocypode. Z. Vgl. Physiol. 73: 1–21.CrossRefGoogle Scholar
  28. Howse, P.E. (1968). The fine structure and functional organisation of chordotonal organs. Symp. Zool. Soc. Lond. 23: 167–198.Google Scholar
  29. Jägers-Röhr, E. (1968). Untersuchungen zur Morphologie und Entwicklung der Scolopidial Organe bei der Stabheuschrecke Carausius morosus. Br. Biol. Zentralbl. 87: 393–409.Google Scholar
  30. Laverack, M.S. (1976). External proprioceptors. In: Structure and Function of roprioceptors in the Invertebrates. Ed. P.J. Mill. Chapman & Hall, London.Google Scholar
  31. Lissmann, H.W. (1950). Proprioceptors. Symp. Soc. Exp. Biol. 4: 34–59.Google Scholar
  32. Lowe, D.A. and Mill, P.J. (1972). The relationship between the PD proprioceptor, the propodite-dactylopodite joint and the dactylopodite flexor muscle in the walking legs of Cancer pagurus. Mar. Behav. Physiol. 1: 157–170.CrossRefGoogle Scholar
  33. Lowe, D.A., Mill, P.J. and Knapp, M.F. (1973). The fine structure of the PD proprioceptor of Cancer pagurus II The position sensitive cells. Proc. R. Soc. Lond. B. Biol. Sei. 184: 199–205.CrossRefGoogle Scholar
  34. Mendelson, M. (1963). Some factors in the activation of crab movement receptors. J. Exp. Biol. 40: 157–170.Google Scholar
  35. Mendelson, M. (1966). The site of impulse initiation in bipolar receptor neurons of Calinectes sapidus L. J. Exp. Biol. 45: 411–420.Google Scholar
  36. Mill, P.J. (1976). Structure and Function of Proprioceptors in the Invertebrates, Chapman & Hall, London.Google Scholar
  37. Mill, P.J. (1976). Chordotonal organs of crustacean appendages. In: Structure and Function of Proprioceptors in the Invertebrates, Ed. P.J. Mill. Chapman & Hall, London.Google Scholar
  38. Mill, P.J. and Lowe, D.A. (1972). An analysis of the types of sensory unit present in the PD proprioceptor of decapod crustaceans. J. Exp. Biol. 56: 509–525.PubMedGoogle Scholar
  39. Mill, P.J. and Lowe, D.A. (1973). The fine structure of the PD proprioceptor of Cancer pagurus 1. The receptor strand and the movement sensitive cells. Proc. Soc. Lond. B. Biol. Sei. 184: 179–197.CrossRefGoogle Scholar
  40. Mbffett, S.B. (1975). Motor patterns and structural interactions of basi-ischopodite levator muscles in routine limb elevation and production of autotomy in the land crab Cardisoma quarihtorti. J. Comp. Physiol. 96: 28–305.Google Scholar
  41. Mbulins, M. (1976). Ultrastructure of chordotonal organs. In: Structure and Function of Proprioceptors in the Invertebrates. Ed. P.J. Mill. Chapman & Hall, London.Google Scholar
  42. Mouuns, M. and Clarac, F. (1972). Ultrastructure d’un organe chordotonal associe a la cuticule dans les appendices de l’Esrevisse. C.R. Hebd. Seances, Acad. Sci. D. 274: 2189–2192.Google Scholar
  43. Pringle, J.W.S. (1938). Proprioception in insects. III. The function of the hair sensilla at the joints. J. Exp. Biol. 15: 467–473.Google Scholar
  44. Pringle, J.W.S. (1961). Proprioception in arthropods. In: The Cell and the Organism. Edit. J.A. Ramsay and V. B. Wigglesworth. University Press, Canbridge.Google Scholar
  45. Richard, G. (1957). Lfontogenese des organes chordotonaux antennaires de Calotermes falvicollis (Fab). Insectes Sociaux, 4: 106–111.Google Scholar
  46. Satir, P. and Gilula, N.B. (1973). The fine structure of membranes and intracellular communications in insects. Annu. Rev. Entomol. 18: 143–166.PubMedCrossRefGoogle Scholar
  47. Sherrington, C.S. (1906). On the proprioceptive system, especially in its reflex aspect. Brain. 29: 467–482.CrossRefGoogle Scholar
  48. Taylor, R.C. (1967). The anatomy and adequate stimulation of a chordotonal organ in the antennae of a hermit crab. Comp. Biochem. Physiol. 20: 709–717.CrossRefGoogle Scholar
  49. Wales, W. (1976). Receptors of the mouth parts and gut of anthropods. In: Structure and Function of Proprioceptors in the Invertebrates. Ed. P.J. Mill. Chapman & Hall, London.Google Scholar
  50. Wales, W., Clarac, F., Dando, M.R. and Laverack, M.S. (1970). Innervation of the receptors present at the various joints of the periopods and third maxilliped of Homarus gammarus (L) and other Macruran Decapods (crustacea). Z. Vgl. Physiol. 68: 345–384.CrossRefGoogle Scholar
  51. Wales, W., Clarac, F. and Laverack, M.S. (1971). Stress detection at the autotomy plane in the decapod crustacea. 1. Comparative anatomy of the receptors of the basischiopodite region. Z. Vgl. Physiol. 73: 357–382.CrossRefGoogle Scholar
  52. Whitear, M. (1962). The fine structure of crustacean proprioceptors. 1. The Chordotonal organs in the legs of the shore crab, Caroinus maenas. Philos.Trans. R. Soc.Lond. B. Biol. Sci. 245: 291–325.CrossRefGoogle Scholar
  53. Wiersma, C.A.G. (1959). Movement receptors in decapod crustacea. J. mar. biol. Assoc. U.K. 38: 143–152.CrossRefGoogle Scholar
  54. Wiersma, C.A.G. and Boettiger, E.G. (1959). Unidirectional movement fibers from a proprioceptive organ of the crab, Caroinus maenas. J. Exp. Biol. 36: 102–112.Google Scholar
  55. Wyse, G.A. and Maynard, D.M. (1965). Joint receptors in the antennule of Panulirus argus (Latreille). J. Exp. Biol. 42: 521–535.Google Scholar
  56. Young, D. (1970). The structure and function of a connective chordotonal organ in the cockroach leg. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 256: 401–428.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1978

Authors and Affiliations

  • W. Wales
    • 1
    • 2
  1. 1.Biology Dept.U. of StirlingScotland
  2. 2.Dunstaffnage Marine Research Lab.Oban, ArgyllScotland

Personalised recommendations