Advertisement

Functional Adaptations in Chemosensory Systems

  • Richard A. Gleeson
Part of the NATO Advanced Study Institutes Series book series (NSSA, volume 18)

Abstract

The chemical sense is perhaps the most primitive of the sensory modalities utilized by organisms for obtaining information from their environment. Throughout the course of evolution chemosensory systems have evolved to play prominent roles in coordinating both intra- and interspecific interactions as well as monitoring certain abiotic environmental parameters. Within the realm of animal communication, substantial experimental evidence has implicated chemical signaling to be the most important channel of communication for much of the animal kingdom (Shorey, 1976). Indeed, it is probable that the earliest forms of interactions between primordial unicellular organisms were chemically mediated, and that this communication served as an evolutionary substrate for the hormone and neurotransmitter systems of the metazoans (Haldane, 1955; Wilson, 1970).

Keywords

Olfactory Receptor Functional Adaptation Alarm Pheromone Scent Mark Brooding Female 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ache, B.W. and Case, J. (1969). An analysis of antennular chemoreception in two commensal shrimps of the genus Betaeus. Physiol. Zool. 42: 361–371.Google Scholar
  2. Ache, B.W. and Davenport, D. (1972). The sensory basis of host recognition by symbiotic shrimps, genus Betaeus. Biol. Bull. 143: 94–111.CrossRefGoogle Scholar
  3. Ache, B.W., Fuzessery, Z.M. and Carr, W.E.S. (1976). Antennular chemosensitivity in the spiny lobster Panulirus argus: Comparative tests of high and low molecular weight stimulants. Biol. Bull. 151: 273–282.CrossRefGoogle Scholar
  4. Adrian, E.D. (1950). Sensory discrimination with some recent evidence from the olfactory organ. Brit. Med. Bull. 6: 330–333.PubMedGoogle Scholar
  5. Adrian, E.D. (1951). Olfactory discrimination. Année Psychol. 50: 107–113.CrossRefGoogle Scholar
  6. Adrian, E.D. (1953). The mechanism of olfactory stimulation in the mammal. Advan. Sci. (London) 9: 417–420.Google Scholar
  7. Adrian, E.D. (1954). The basis of sensation — some recent studies of olfaction. Brit. Med. J. 1: 287–290.PubMedCrossRefGoogle Scholar
  8. Anderson, K.K. and Bernstein, D.J. (1975). Some chemical constituents of the scent of the striped skunk (Mephitis mephitis). J. Chem. Ecol. 1: 493–499.CrossRefGoogle Scholar
  9. Atema, J. (in press). Functional separation of smell and taste in fish and crustacea. In: Olfaction and taste VI, edited by P. MacLeod. Information Retrieval Limited, London.Google Scholar
  10. Bannister, L.H. (1974). Possible functions of mucus at gustatory and olfactory surfaces. In: Transduction mechanisms in chemoreception, edited by T.M. Poynder. Information Retrieval Limited, London.Google Scholar
  11. Bardach, J.E. (1975). Chemoreception of aquatic animals. In: Olfaction and taste V, edited by D.A. Denton and J.P. Coghlan. Academic Press, New York.Google Scholar
  12. Bardach, J.E. and Case, J. (1965). Sensory capabilities of the modified fins of squirrel hake (Urophyois ohuss) and searobins (Prionotus cavotinus and P. evolans). Copeia 1965 (2):194– 206.Google Scholar
  13. Bardach, J.E., Todd, J.H. and Crickmer, R. (1967). Orientation by taste in fish of the genus Iotalurus. Science 155: 1276–1278.PubMedCrossRefGoogle Scholar
  14. Bardach, J.E. and Villars, T. (1974). The chemical senses of fishes. In: Chemoreception in marine organisms, edited by P.T. Grant and A.M. Mackie. Academic Press, New York.Google Scholar
  15. Beauchamp, G.K., Doty, R.L., Moulton, D.G. and Mugford, R.A. (1976). The pheromone concept in mammalian chemical communication: A critique. In: Mammalian olfaction, reproductive processes, and behavior, edited by R.L. Doty. Academic Press, New York.Google Scholar
  16. Beets, M.G.J. (1971). Olfactory response and molecular structure. In: Handbook of sensory physiology. Olfaction. Vol. 4, Part 1, edited by L.M. Beidler. Springer-Verlag, New York.Google Scholar
  17. Beidler, L.M. (1954). A theory of taste stimulation. J. Gen. Physiol. 38: 133–139.PubMedCrossRefGoogle Scholar
  18. Benvenuti, S., Fiaschi, V., Fiore, L. and Papi, F. (1973a). Homing performances of inexperienced and directionally trained pigeons subjected to olfactory nerve section. J. Comp. Physiol. 83: 81–92.CrossRefGoogle Scholar
  19. Benvenuti, S., Fiaschi, V., Fiore, L. and Papi, F. (1973b). Disturbances of homing behavior in pigeons experimentally induced by olfactory stimuli. Monit. Zool. Ital. (N.S.) 7: 117–128.Google Scholar
  20. Birch, M.C. (1974a). Aphrodisiac pheromones in insects. In: Pheromones, edited by M.C. Birch. North-Holland Pub. Co., Amsterdam.Google Scholar
  21. Birch, M.C. (ed.) (1974b). Pheromones. North-Holland Pub. Co., Amsterdam.Google Scholar
  22. Blum, M.S. (1974). Pheromonal bases of social manifestations in insects. In: Pheromones, edited by M.C. Birch. North-Holland Pub. Co., Amsterdam.Google Scholar
  23. Bossert, W.H. and Wilson, E.O. (1963). The analysis of olfactory communication among animals. J. Theor. Biol. 5: 443–469.PubMedCrossRefGoogle Scholar
  24. Braveman, N.S. (1975). Relative salience of gustatory and visual cues in the formation of poison-based food aversions by guinea pigs (Cavia poroellus). Behav. Biol. 14: 189–199.PubMedCrossRefGoogle Scholar
  25. Brown, W.L., Jr. (1968). An hypothesis concerning the function of the metapleural glands in ants. Am. Nat. 102: 188–191.CrossRefGoogle Scholar
  26. Brown, W.L., Jr., Eisner, T. and Whittaker, R.H. (1970). Allomones and kairomones: Transpecific chemical messengers. Bioscience 20: 21–22.CrossRefGoogle Scholar
  27. Bullock, T.H. (1953). Predator recognition and escape responses of some intertidal gastropods in the presence of starfish. Behaviour 5: 130–140.CrossRefGoogle Scholar
  28. Burghardt, G.M. (1968). Chemical preference studies on newborn snakes of three sympatric species of Natrix. Copeia 1968 (4): 732–737.CrossRefGoogle Scholar
  29. Burghardt, G.M. (1970). Chemical perception in reptiles. In: Advances in chemoreception, Vol. 1. Communication by chemical signals, edited by J.W. Johnston, Jr., D.G. Moulton and A. Turk. Appleton-Century-Crofts, New York.Google Scholar
  30. Caprio, J. (1975). High sensitivity of catfish taste receptors to amino acids. Comp. Biochem. Physiol. 52A: 247–251.CrossRefGoogle Scholar
  31. Carr, W.E.S., Hall, E.R. and Gurin, S. (1974). Chemoreception and the role of proteins: A comparative study. Comp. Biochem. Physiol. 47A: 559–566.CrossRefGoogle Scholar
  32. Chambliss, O.L. and Jones, C.M. (1966). Cucurbitacins: Specific insect attractants in the Cucurbitaceae. Science 153: 1392–1393.PubMedCrossRefGoogle Scholar
  33. Cheal, M. and Sprott, R.L. (1971). Social olfaction: a review of the role of olfaction in a variety of animal behaviors. Psychol. Rep. 29: 195–243.PubMedCrossRefGoogle Scholar
  34. Cook, A., Bamford, O.S., Freeman, J.D.B. and Teideman, D.J. (1969). A study of the homing habit of the limpet. Anim. Behav. 17: 330–339.CrossRefGoogle Scholar
  35. Cook, S.B. (1969). Experiments on homing in the limpet Siphonaria normalis. Anim. Behav. 17: 679–682.CrossRefGoogle Scholar
  36. Crisp, D.J. (1974). Factors influencing the settlement of marine invertebrate larvae. In: Chemoreception in marine organisms, edited by P.T. Grant and A.M. Mackie. Academic Press, New York.Google Scholar
  37. Dahl, E., Emanuelsson, H. and von Mecklenburg, C. (1970). Pheromone transport and reception in an amphipod. Science 170: 739–740.PubMedCrossRefGoogle Scholar
  38. Davenport, D. (1950). Studies in the physiology of commensalism. I. The polynoid genus ArctonDe. Biol. Bull. 98: 81–93.PubMedCrossRefGoogle Scholar
  39. Davenport, D. and Norris, K.S. (1958). Observations on the symbiosis of the sea anemone Stoichactus and the pomacentrid fish, Amphiprion pereula. Biol. Bull. 115: 397–410.CrossRefGoogle Scholar
  40. Davies, J.T. (1971). Olfactory theories. In: Handbook of sensory physiology. Olfaction. Vol. 4, Part 1, edited by L.M. Beidler. Springer-Verlag, New York.Google Scholar
  41. Dethier, V.G. (1974). The specificity of the labellar chemoreceptors of the blowfly and the response to natural foods. J. Insect Physiol. 20: 1859–1869.PubMedCrossRefGoogle Scholar
  42. Dimock, R.V. and Davenport, D. (1971). Behavioral specificity and the induction of host recognition in a symbiotic polychaete. Biol. Bull. 141: 472–484.CrossRefGoogle Scholar
  43. Doty, R.L. (1974). A cry for the liberation of the female rodent: Courtship and copulation in Rodentia. Psychol. Bull. 81:159– 172.Google Scholar
  44. Düving, K.B., Nordeng, H. and Oakley, B. (1974). Single unit discrimination of fish odours released by char (Salmo alpinus L.) populations. Comp. Biochem. Physiol. 47A: 1051–1063.CrossRefGoogle Scholar
  45. Eisenberg, J.F. and Kleiman, D.G. (1972). Olfactory communication in mammals. Annu. Rev. Ecol. Syst. 3: 1–32.CrossRefGoogle Scholar
  46. Eisner, T. (1966). Beetle’s spray discourages predators. Nat. Hist. 75: 42–47.Google Scholar
  47. Eisner, T. (1970). Chemical defense against predation in arthropods. In: Chemical Ecology, edited by E. Sondheimer and J.B. Simeone. Academic Press, New York.Google Scholar
  48. Erickson, R. (1963). Sensory neural patterns and gustation. In: Olfaction and taste I, edited by Y. Zotterman. Pergamon Press, New York.Google Scholar
  49. Ewer, R.F. (1968). Ethology of mammals. Plenum Press, New York.Google Scholar
  50. Farkas, S.R. and Shorey, H.H. (1972). Chemical trail-following by flying insects: A mechanism for orientation to a distant odor source. Science 178: 67–68.PubMedCrossRefGoogle Scholar
  51. Feder, H.M. (1963). Gastropod defensive responses and their effectiveness in reducing predation by starfishes. Ecology 44: 505–512.CrossRefGoogle Scholar
  52. Fiaschi, V. and Wagner, G. (1976). Pigeons homing — some experiments for testing the olfactory hypothesis. Experientia 32: 991–993.PubMedCrossRefGoogle Scholar
  53. Frankel, G. (1959). The raison d’etre of secondary plant substances. Science 129: 1466–1470.CrossRefGoogle Scholar
  54. Frisch, K. von (1938). Zur Physiologie des Fischschwarmes. Naturwissenschaften 26: 601–606.CrossRefGoogle Scholar
  55. Frisch, K. von (1941). Uber einen Schreckstoff der Fischhaut und seine biologische Bedeutung. Z. Vergl. Physiol. 29: 46–145.CrossRefGoogle Scholar
  56. Fuzessery, Z.M. and Childress, J.J. (1975). Comparative chemosensitivity to amino acids and their role in the feeding activity of bathypelagic and littoral crustaceans. Biol. Bull. 149:522- 538.Google Scholar
  57. Galtsoff, P.S. (1938). Physiology of reproduction of Crassostrea virginica. II. Stimulation of spawning in the female oyster. Biol. Bull. 75: 286–307.CrossRefGoogle Scholar
  58. Galtsoff, P.S. (1940). Physiology of reproduction of Crassostrea virginica. III. Stimulation of spawning in the male oyster. Biol. Bull. 78: 117–135.CrossRefGoogle Scholar
  59. Garcia, J. and Hankins, W.G. (1975). The evolution of bitter and the acquisition of toxiphobia. In: Olfaction and taste V, edited by D.A. Denton and J.P. Coghlan. Academic Press, New York.Google Scholar
  60. Gesteland, R.C., Lettvin, J.Y. and Pitts, W.H. (1965). Chemical transmission in the nose of the frog. J. Physiol. (London) 181: 525–559.Google Scholar
  61. Gesteland, R.C., Lettvin, J.Y., Pitts, W.H. and Rojas, A. (1963). Odor specificities of the frogs’ olfactory receptors. In: Olfaction and taste I, edited by Y. Zotterman. Pergamon Press, Oxford.Google Scholar
  62. Getchell, T.V. (1974). Unitary responses in frog olfactory epithelium to sterically related molecules at low concentrations. J. Gen. Physiol. 64: 241–261.PubMedGoogle Scholar
  63. Ghiradella, H., Case, J.F. and Cronshaw, J. (1968). Structure of aesthetascs in selected marine and terrestrial decapods: Chemoreceptor morphology and environment. Am. Zool. 8: 603–621.PubMedGoogle Scholar
  64. Gleeson, R.A. (1976). Pheromone-mediated behavior in the blue crab Callineetes sapidus. Am. Zool. 16: 197.Google Scholar
  65. Gove, D. and Burghardt, G.M. (1975). Responses of ecologically dissimilar populations of the water snake Natrix s. sipedon to chemical cues from prey. J. Chem. Ecol. 1: 25–40.CrossRefGoogle Scholar
  66. Graziadei, P.P.C. (1969). The ultrastrueture of vertebrate taste buds. In: Olfaction and taste III, edited by C. Pfaffmann. Rockefeller University Press, New York.Google Scholar
  67. Graziadei, P.P.C. (1974). The olfactory and taste organs of vertebrates: A dynamic approach to the study of their morphology. In: Transduction mechanisms in chemoreception, edited by T.M. Poynder. Information Retrieval Limited, London.Google Scholar
  68. Graziadei, P.P.C. (1977). Functional anatomy of the mammalian chemoreceptor system. In: Chemical signals in vertebrates, edited by D. Müller-Schwarze and M.M. Mozell. Plenum Press, New York.Google Scholar
  69. Grubb, T.C., Jr. (1972). Smell and foraging in shearwaters and petrels. Nature (London) 237: 404–405.CrossRefGoogle Scholar
  70. Grubb, T.C., Jr. (1974). Olfactory navigation to the nesting burrow in Leach’s petrel (Oceanodroma leuoorrhoa). Anim. Behav. 22: 192–202.PubMedCrossRefGoogle Scholar
  71. Haidane, J.B.S. (1955). Animal communication and the origin of human language. Sei. Progr. (London) 43: 385–401.Google Scholar
  72. Hall, J.R. (1973). Intraspecific trail-following in the marsh periwinkle Littorina ivvovata Say. Veliger 16: 72–75.Google Scholar
  73. Hamner, P. and Hamner, W.M. (1977). Chemosensory tracking of scent trails by the planktonic shrimp Aoetes sibogae australis. Science 195: 886–888.PubMedCrossRefGoogle Scholar
  74. Hasler, A.D. (1966). Underwater guideposts. University of Wisconsin Press, Madison.Google Scholar
  75. Hasler, A.D. and Wisby, W.J. (1951). Discrimination of stream odors by fishes and its relation to parent stream behavior. Amer. Natur. 85: 223–238.CrossRefGoogle Scholar
  76. Hickok, J. and Davenport, D. (1957). Further studies in the behavior of commensal polychaetes. Biol. Bull. 113: 397–406.CrossRefGoogle Scholar
  77. Hodgson, E.S. (1968). Taste receptors of arthropods. In: Invertebrate receptors, edited by J.D. Carthy and G.E. Newell. Symp. Zool. Soc. London 23: 269–277.Google Scholar
  78. Holley, A., Duchamp, A., Revial, M.F., Juge, A. and MacLeod, P. (1974). Qualitative and quantitative discrimination in the frog’s olfactory receptors: Analysis from electrophysiological data. Ann. N.Y. Acad. Sci. 237: 102–114.PubMedCrossRefGoogle Scholar
  79. Howe, N.R. and Sheikh, Y.M. (1975). Anthopleurine: A sea anemone alarm pheromone. Science 189: 386–388.PubMedCrossRefGoogle Scholar
  80. Idler, D.R., Fagerlund, V.H.M. and Mayoh, H. (1956). Olfactory perception in migrating salmon. I. L-serine, a salmon repellent in mammalian skin. J. Gen. Physiol. 39: 889–892.PubMedCrossRefGoogle Scholar
  81. Jacobson, M. (1972). Insect sex pheromones. Academic Press, New York.Google Scholar
  82. Johnston, J.W., Jr., Moulton, D.G. and Turk, A. (eds. ) (1970). Advances in chemoreception, Vol. 1. Communication by chemical signals. Appleton-Century-Crofts, New York.Google Scholar
  83. Kaissling, K.-E. (1971). Insect olfaction. In: Handbook of sensory physiology. Olfaction. Vol. 4, Part 1, edited by L.M. Beidler. Springer-Verlag, New York.Google Scholar
  84. Karlson, P. and Luscher, M. (1959). “Pheromones” a new term for a class of biologically active substances. Nature (London) 183: 155–156.Google Scholar
  85. Keeton, W.T. (1974). Pigeon homing: No influence of outward-journey detours on initial orientation. Monit. Zool. Ital. (N.S.) 8: 227–234.Google Scholar
  86. Keeton, W.T. and Brown, A.I. (1976). Homing behavior of pigeons not disturbed by application of an olfactory stimulus. J. Comp. Physiol. 105: 259–266.CrossRefGoogle Scholar
  87. Kittredge, J.S., Takahashi, F.T., Lindsey, J. and Lasker, R. (1974).Google Scholar
  88. Chemical signals in the sea: Marine allelochemics and evolution. Fish. Bull. 72: 1–11.Google Scholar
  89. Laverack, M.S. (1974). The structure and function of chemoreceptor cells. In: Chemoreception in marine organisms, edited by P.T. Grant and A.M. Mackie. Academic Press, New York.Google Scholar
  90. Levin, D.A. (1976). The chemical defenses of plants to pathogens and herbivores. Annu. Rev. Ecol. Syst. 7: 121–159.CrossRefGoogle Scholar
  91. Lindstedt, K.J. (1971). Chemical control of feeding behavior. Comp. Biochem. Physiol. 39A: 553–581.CrossRefGoogle Scholar
  92. Little, E.E. (1975). Chemical communication in maternal behavior of crayfish. Nature (London) 255: 400–401.CrossRefGoogle Scholar
  93. MacGinitie, G.E. and MacGinitie, N. (1968). Natural history of marine animals. McGraw-Hill, New York.Google Scholar
  94. Mackie, A.M. and Grant, P.T. (1974). Interspecies and intraspecies chemoreception by marine invertebrates. In: Chemoreception in marine organisms, edited by P.T. Grant and A.M. Mackie. Academic Press, London.Google Scholar
  95. Madison, D.M., Scholz, A.T., Cooper, J.C., Horrall, R.M., Hasler, A.D. and Dizon, A.E. (1973). Olfactory hypotheses and salmon migration: A synopsis of recent findings. Fish. Res. Board Can. Tech. Rep. 414: 1–35.Google Scholar
  96. Marshall, N.B. (1967). The olfactory organs of bathypelagic fishes. Symp. Zool. Soc. London 19: 57–70.Google Scholar
  97. Moncrieff, R.W. (1951). The chemical senses. Leonard Hill, London.Google Scholar
  98. Moulton, D.G. (1976). Spatial patterning of response to odors in the peripheral olfactory system. Physiol. Rev. 56: 578–593.PubMedGoogle Scholar
  99. Moulton, D.G. and Beidler, L.M. (1967). Structure and function in the peripheral olfactory system. Physiol. Rev. 47: 1–52.PubMedGoogle Scholar
  100. Mozell, M.M. (1977). Processing of olfactory stimuli at peripheral levels. In: Chemical signals in vertebrates, edited by D. Müller-Schwarze and M.M. Mozell. Plenum Press, New York.Google Scholar
  101. Müller-Schwarze, D. (1971). Pheromones in black-tailed deer (iodocoileus hemionus oolumbianus). Anim. Behav. 19: 141–152.PubMedCrossRefGoogle Scholar
  102. Müller-Schwarze, D. and Mozell, M.M. (eds.) (1977). Chemical signals in vertebrates. Plenum Press, New York.Google Scholar
  103. Mykytowycz, R., Hesterman, E.R., Gambale, S. and Dudzinski, M.L. (1976). A comparison of the effectiveness of the odors of rabbits, Oryotolagus ouniaulus3 in enhancing territorial confidence. J. Chem. Ecol. 2: 13 - 24.CrossRefGoogle Scholar
  104. Nachman, M. and Cole, L.P. (1971). Role of taste in specific hungers. In: Handbook of sensory physiology. Taste. Vol. 4, Part 2, edited by L.M. Beidler. Springer-Verlag, New York.Google Scholar
  105. Nordeng, H. (1971). Is the local orientation of anadromous fishes determined by pheromones? Nature (London) 233: 411–413.CrossRefGoogle Scholar
  106. Norlund, D.A. and Lewis, W.J. (1976). Terminology of chemical releasing stimuli in intraspecific and interspecific interactions. J. Chem. Ecol. 2: 211–220.CrossRefGoogle Scholar
  107. O’Connell, R.J. (1975). Olfactory receptor responses to sex pheromone components in the redbanded leafroller moth. J. Gen. Physiol. 65: 179–205.PubMedCrossRefGoogle Scholar
  108. O’Connell, R.J. and Mozell, M.M. (1969). Quantitative stimulation of frog olfactory receptors. J. Neurophysiol. 32: 51–63.PubMedGoogle Scholar
  109. Otte, D. (1974). Effects and functions in the evolution of signaling systems. Annu. Rev. Ecol. Syst. 5: 385–417.CrossRefGoogle Scholar
  110. Papi, F., Fiore, L., Fiashi, V. and Benvenuti, S. (1971). The influence of olfactory nerve section on the homing capacity of carrier pigeons. Monit. Zool. Ital. (N.S.) 5: 265–267.Google Scholar
  111. Papi, F., Fiore, L., Fiashi, V. and Benvenuti, S. (1972). Olfaction and homing in pigeons. Monit. Zool. Ital. (N.S.) 6: 85–95.Google Scholar
  112. Papi, F., Fiore, L., Fiashi, V. and Benvenuti, S. (1973). An experiment for testing the hypothesis of olfactory navigation of homing pigeons. J. Comp. Physiol. 83: 93–102.CrossRefGoogle Scholar
  113. Papi, F., Ioalé, P., Fiaschi, V., Benvenuti, S. and Baldaccini, N.E. (1974). Olfactory navigation of pigeons: The effect of treatment with odorous air currents. J. Comp. Physiol. 94: 187–193.CrossRefGoogle Scholar
  114. Parsons, T.S. (1971). Anatomy of nasal structures from a comparative viewpoint. In: Handbook of sensory physiology. Olfaction. Vol. 4, Part 1, edited by L.M. Beidler. Springer-Verlag, New York.Google Scholar
  115. Pfaffmann, C. (1941). Gustatory afferent impulses. J. Cell. Comp. Physiol. 17: 243–258.CrossRefGoogle Scholar
  116. Pfaffmann, C. (1974). Specificity of the sweet receptors of the squirrel monkey. Chem. Senses Flav. 1: 61–67.CrossRefGoogle Scholar
  117. Phillips, D.W. (1975a). Distance chemoreception-triggered avoidance behavior of the limpets Acmaea (Collisella) limatula and Acmaea (Notoacmea) scutum to the predatory starfish Pisaster ochraceus. J. Exp. Zool. 191: 199–210.CrossRefGoogle Scholar
  118. Phillips, D.W. (1975b). Localization and electrical activity of the distance chemoreceptors that mediate predator avoidance behavior in Acmaea limatula and Acmaea scutum. J. Exp. Biol. 63: 403–412.PubMedGoogle Scholar
  119. Polak, E.H. (1973). Multiple profile-multiple receptor site model for vertebrate olfaction. J. Theor. Biol. 40: 469–484.PubMedCrossRefGoogle Scholar
  120. Powers, J.B. and Winans, S.S. (1975). Vomeronasal organ: critical role in mediating sexual behavior of the male hamster. Science 187: 961–963.PubMedCrossRefGoogle Scholar
  121. Regnier, F.E. and Goodwin, M. (1977). Chemical and environmental modulation of pheromone release from vertebrate scent marks. In: Chemical signals in vertebrates, edited by D. Muller-Schwarze and M.M. Mozell. Plenum Press, New York.Google Scholar
  122. Rogers, J.G., Jr. and Beauchamp, G.K. (1976). Some ecological implications of primer chemical stimuli in rodents. In: Mammalian olfaction, reproductive processes, and behavior, edited by R.L. Doty. Academic Press, New York.Google Scholar
  123. Ropartz, P. (1966). Contribution à l’étude du déterminisme d’un effet de groupe chez les souris. Compt. Rend. 262: 2070–2072.Google Scholar
  124. Ropartz, P. (1968). Role des communications olfactives dans le comportement social des souris males. Colloq. Intern. Centre Natl. Rech. Sci. (Paris) 173: 323–339.Google Scholar
  125. Rottman, S.J. and Snowdon, C.T. (1972). Demonstration and analysis of an alarm pheromone in mice. J. Comp. Physiol. Psych. 81: 483–490.Google Scholar
  126. Sato, M. (1971). Neural coding in taste as seen from recordings from peripheral receptors and nerves. In: Handbook of sensory physiology. Taste. Vol. 4, Part 2, edited by L.M. Beidler. Springer-Verlag, New York.Google Scholar
  127. Schneider, D. (1969). Insect olfaction: deciphering system for chemical messages. Science 163: 1031–1037.PubMedCrossRefGoogle Scholar
  128. Schneider, D., Kasang, G. and Kaissling, K.-E. (1968). Bestimmung der Riechschwelle von Bombyx mori mit Tritium-markiertem Bombykol. Naturwissenschaften 55: 395.PubMedCrossRefGoogle Scholar
  129. Schneider, D. and Steinbrecht, R.A. (1968). Checklist of insect olfactory sensilia. Symp. Zool. Soc. London 23: 279–297.Google Scholar
  130. Scholz, A.T., Horrall, R.M., Cooper, J.C. and Hasler, A.D. (1976). Imprinting to chemical cues: The basis for home stream selection in salmon. Science 192: 1247–1249.PubMedCrossRefGoogle Scholar
  131. Shafer, R. (1977). The nature and development of sex attractant specificity in cockroaches of the genus Peripzaneta. IV. Electrophysiological study of attractant specificity and its determination by juvenile hormone. J. Exp. Zool. 199: 189–208.CrossRefGoogle Scholar
  132. Shorey, H.H. (1973). Behavioral responses to insect pheromones. Annu. Rev. Entomol. 18: 349–380.PubMedCrossRefGoogle Scholar
  133. Shorey, H.H. (1976). Animal communication by pheromones. Academic Press, New York.Google Scholar
  134. Silverstein, R.M. and Young, J.C. (1976). Insects generally use multicomponent pheromones. In: Pest management with insect sex attractants and other behavior-controlling chemicals, edited by M. Beroza. ACS Symposium Series, No. 23, American Chemical Society, Washington, D.C.Google Scholar
  135. Solomon, D.J. (1973). Evidence of pheromone-influenced homing by migrating Atlantic salmon, Salmo salar (L.). Nature (London) 244: 231–232.CrossRefGoogle Scholar
  136. Steinbrecht, R.A. (1969). Comparative morphology of olfactory receptors. In: Olfaction and taste III, edited by C. Pfaffmann. Rockefeller University Press, New York.Google Scholar
  137. Thiessen, D.D., Regnier, F.E., Rice, M., Goodwin, M., Isaacks, N. and Lawson, N. (1974). Identification of a ventral scent marking pheromone in the male Mongolian gerbil (Meriones unguiculatus). Science 184: 83–85.PubMedCrossRefGoogle Scholar
  138. Tobach, E. (1971). Photoreception and chemoreception: Questions for the evolution and development of orientation. Ann. N.Y. Acad. Sei. 188: 194–201.CrossRefGoogle Scholar
  139. Todd, J.H., Atema, J. and Bardach, J.E. (1967). Chemical communication in the social behavior of a fish, the yellow bullhead, Iotalurus natalis. Science 158: 672–673.PubMedCrossRefGoogle Scholar
  140. Vinnikov, Y.A. (1975). The evolution of olfaction and taste. In: Olfaction and taste V, edited by D.A. Denton and J.P. Coghlan. Academic Press, New York.Google Scholar
  141. Vovelle, J. (1965). Le tube de Sabellaria alveolata (L.) annélide polychète Hermellidae et son ciment. Etude ecologique expérimentale, histologique et histochemique. Archs. Zool. Exp. Gén. 106: 1–187.Google Scholar
  142. Wenzel, B.M. (1968). The olfactory prowess of the kiwi. Nature (London) 220: 1133–1134.CrossRefGoogle Scholar
  143. Wenzel, B.M. (1972). Olfactory sensation in the kiwi and other birds. Ann. N.Y. Acad. Sei. 188: 183–193.CrossRefGoogle Scholar
  144. Wheeler, J.W. (1977). Properties of compounds used as chemical signals in vertebrates, edited by D. Müller-Schwarze and M.M. Mozeil. Plenum Press, New York.Google Scholar
  145. Whittacker, R.H. and Feeny, P.P. (1971). Allelochemics: Chemical interaction between species. Science 171: 757 - 770.CrossRefGoogle Scholar
  146. Whitten, W.K. (1966). Pheromones and mammalian reproduction. Advan. Reprod. Physiol. 1: 155–177.Google Scholar
  147. Wilson, D.P. (1968). The settlement behaviour of the larvae of Sabellaria alveolata. J. Mar. Biol. Ass. U.K. 48: 387–435.CrossRefGoogle Scholar
  148. Wilson, D.P. (1970a). Additional observations on larval growth and settlement in Sabellaria alveolata. J. Mar. Biol. Ass. U.K. 50: 1–31.CrossRefGoogle Scholar
  149. Wilson, D.P. (1970b). The larvae of Sabellaria spinulosa and their settlement behaviour. J. Mar. Biol. Ass. U.K. 50: 33–52.CrossRefGoogle Scholar
  150. Wilson, E.O. (1963). The social biology ants. Annu. Rev. Entomol. 8: 345–368.CrossRefGoogle Scholar
  151. Wilson, E.O. (1970). Chemical communication within animal species. In: Chemical Ecology, edited by E. Sondheimer and J.B. Simeone. Academic Press, New York.Google Scholar
  152. Wilson, E.O. and Bossert, W.H. (1963). Chemical communication among animals. Recent Progr. Horn. Res. 19: 673–716.Google Scholar

Copyright information

© Plenum Press, New York 1978

Authors and Affiliations

  • Richard A. Gleeson
    • 1
  1. 1.Monell Chemical Senses CenterUniversity of PennsylvaniaPhiladelphiaUSA

Personalised recommendations