Advertisement

Sensory Ecology of Mammals

  • R. A. Suthers
Part of the NATO Advanced Study Institutes Series book series (NSSA, volume 18)

Abstract

Mammals inhabit a wide range of environments and exhibit a variety of sensory adaptations for specialized ecological niches. The discussion in the following pages will be restricted to vision and audition. Since even these senses cannot be fully treated in the space available, attention will be focused on the sensory ecology of selected mammalian groups which illustrate sensory adaptations to certain diverse habitats.

Keywords

Basilar Membrane Killer Whale Tree Shrew Elephant Seal Cochlear Microphonic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Autrum, H. and I. Thomas (1973). Comparative physiology of colour vision in animals. In: Handbook of Sensory Physiology. R. Jung, editor, Vol. VII/3, Part A, pp. 661–692. Springer- Verlag, N.Y.Google Scholar
  2. Balliet, R.F. and R.J. Schusterman (1971). Underwater and aerial visual acuity in the Asian “Clawless” Otter (Amblonyx oineria cineria). Nature (Lond.) 234: 305–306.CrossRefGoogle Scholar
  3. Bartholomew, G.A. and N.E. Collias (1962). The role of vocalization in the social behavior of the Northern elephant seal. Anim. Behav. 10: 7–14.CrossRefGoogle Scholar
  4. Blevins, C.E. and B.J. Parkins (1973). Functional anatomy of the porpoise larynx. Am. J. Anat. 138: 151–164.PubMedCrossRefGoogle Scholar
  5. Bradbury, J.W. (1970). Target discrimination by the echolocating bat Vampyrum specturm. J. Exp. Zool. 173: 23–46.PubMedCrossRefGoogle Scholar
  6. Bradbury, J.W. and F. Nottebohm (1969). The use of vision by the little brown bat, Myotis luoifugus3 under controlled conditions. Anim. Behav. 17: 480–485.PubMedCrossRefGoogle Scholar
  7. Bridgeman, C.S. and K.U. Smith (1942). The absolute threshold of vision in the cat and man with observations on its relation to the optic cortex. Am. J. Physiol. 136: 463–466.Google Scholar
  8. Brown, A.M. and J.D. Pye (1975). Auditory sensitivity at high frequencies in mammals. In: Advances in Comparative Physio¬logy and Biochemistry. Vol. 6, pp. 1–73. 0. Lowenstein, editor, Academic Press, N.Y.Google Scholar
  9. Bullock, T.H., A.D. Grinnell, E. Ikezono, K. Kameda, Y. Katsuki, M. Nomoto, O. Sato, N. Suga and K. Yanagisawa (1968). Electrophysiological studies of central auditory mechanisms in cetaceans. Z. vgl. Physiol. 59: 117–156.Google Scholar
  10. Caspary, D. (1972). Classification of subpopulations of neurons in the cochlear nuclei of the kangaroo rat. Exp. Neurol. 37: 131–151.PubMedCrossRefGoogle Scholar
  11. Chase, J. (1972). The role of vision in echolocating bats. Ph.D. Thesis. Indiana University, Bloomington, Indiana.Google Scholar
  12. Chase, J. and R.A. Suthers (1969). Visual obstacle avoidance by echolocating bats. Anim. Behav. 17: 201–207.PubMedCrossRefGoogle Scholar
  13. Cooper, G.F. and J.G. Robson (1969a). The yellow colour of the lens of the grey squirrel (Soiurus carotinensis leueotis). J. Physiol. (Lond.) 203: 403–410.Google Scholar
  14. Cooper, G.F. and J.G. Robson (1969b). The yellow colour of the lens of man and other primates. J. Physiol. (Lond.) 203: 411– 417.Google Scholar
  15. DeValois, R.L. and G.H. Jacobs (1971). Vision. In: A. Schrier and F. Stollnitz, editors. Behavior of Non Human Primates. Vol. 3, pp. 107–157. Academic Press, N.Y.Google Scholar
  16. Diercks, K.J. (1972). Biological sonar systems: A bionics survey. Publication ARL-TR-72-34. Applied Research Laboratories, Univ. of Texas, Austin, Texas.Google Scholar
  17. Diercks, K.J., R.T. Trochta, C.F. Greenlaw and W.E. Evans (1971). Recording and analysis of dolphin echolocation signals. J. Acoust. Soc. Am. 49: 1729–1732.CrossRefGoogle Scholar
  18. Dodt, E. and J. Walther (1958). Spektrale Sensitivitat und Blutreflexion. Pflugers Arch. Ges. Physiol. 266: 187–192.CrossRefGoogle Scholar
  19. Dral, A.D.G. (1972). Aquatic and aerial vision in the bottle- nosed dolphin. Neth. J. Sea Res. 5: 510–513.CrossRefGoogle Scholar
  20. Dral, A.D.G. and L. Beumer (1974). The anatomy of the eye of the Ganges River Dolphin, Platanista gangetioa (Roxburgh, 1801). Z. Saugetierkd. 39: 143–167.Google Scholar
  21. Dudok van Heel, W.H. (1962). Sound and cetacea. Neth. J. Sea. Res. 1: 407–507.CrossRefGoogle Scholar
  22. Ellins, S.R. and F.A. Masterson (1974). Brightness discrimina-tion thresholds in the bat, Eptesious fuscus. Brain Behav. Evol. 9: 248–263.PubMedCrossRefGoogle Scholar
  23. Evans, W.E. (1967). Vocalization among marine mammals. In: Marine Bio-Acoustics. W.N. Tavolga, editor. Vol. 2 pp. 159–186. Pergamon Press.Google Scholar
  24. Evans, W.E. and R.M. Haugen (1963). An experimental study of the echolocation ability of a California sea lion Za Zophns oalifornianus (Lesson). Bull. South. Calif. Acad. Sci. 62: 165–175.Google Scholar
  25. Fraser, F.C. and P.E. Purves (1954). Hearing in Cetaceans. Bull. Brit. Mus. (Nat. His.), Zool. 2: 103–116.Google Scholar
  26. Fraser, F.C. and P.E. Purves (1960). Hearing in Cetaceans. Bull. Brit. Mus. (Nat. His.), Zool. 7: 1–140.Google Scholar
  27. Gentry, R.L. and R.S. Peterson (1967). Underwater vision of the sea otter. Nature (Lond.) 216: 435–436.CrossRefGoogle Scholar
  28. Goodwin, G.G. and A.M. Greenhall (1961). A review of the bats of Trinidad and Tobago. Bull. Am. Mus. Nat. Hist. 122 (Article 3): 191–301.Google Scholar
  29. Gourevitch, G. and M. Hack (1966). Audibility in the rat. J. Comp. Physiol. Psychol. 62: 289–291.PubMedCrossRefGoogle Scholar
  30. Griffin, D.R. (1958). Listening in the Dark. The Acoustic Orientation of Bats and Men. Yale University Press. New Haven.Google Scholar
  31. Griffin, D.R. (1971). The importance of atmospheric attenuation for the echolocation of bats (Chiroptera). Anim. Behav. 19: 55–61.PubMedCrossRefGoogle Scholar
  32. Griffin, D.R., J. Friend and F. Webster (1965). Target discrim-ination by the echolocation of bats. J. Exp. Zool. 158: 155–168.PubMedCrossRefGoogle Scholar
  33. Grinnell, A.D. (1963). The neurophysiology of audition in bats: Intensity and frequency parameters. J. Physiol. (Lond.) 167: 38–66.Google Scholar
  34. Gruschka, H.D., I.U. Borchers and J.G. Coble (1971). Aerodynamic noise produced by a gliding owl. Nature (Lond.) 233: 409–411.CrossRefGoogle Scholar
  35. Gunter, R. (1951). The absolute threshold for vision in the cat. J. Physiol. (Lond.) 114: 8–15.Google Scholar
  36. Hebel, R. (1976). Distribution of retinal ganglion cells in five mammalian species (pig, sheep, ox, horse, dog). Anat. Embryol. 150: 45–51.PubMedGoogle Scholar
  37. Heffner, H., R. Ravizza and B. Masterton (1969). Hearing in primitive mammals. Ill Tree shrew (Tupaia gKs). J. Aud. Res. 9: 12–18.Google Scholar
  38. Herman, L.M., M.F. Peacock, M.P. Yunker, and C.J. Madsen (1975) Bottlenosed dolphin: Double-slit pupil yields equivalent aerial and underwater diurnal acuity. Science (Wash. D.C.) 189: 650–652.CrossRefGoogle Scholar
  39. Jacobs, D.W. (1972). Auditory frequency discrimination in the Atlantic bottlenose dolphin. Tursiops trunoatus Montague: A preliminary report. J. Acoust. Soc. Am. 52: 696–698.CrossRefGoogle Scholar
  40. Jacobs, D.W. and J.D. Hall (1972). Auditory thresholds of a fresh water dolphin, Inia geoffvensis Blainville. J. Acoust. Soc. Am. 51: 530–533.CrossRefGoogle Scholar
  41. Jamieson, G.S. and H.D. Fisher. 1970. Visual discriminations in the harbour seal, Phooa vitulina, above and below water. Vision Res. 10: 1175–1180.PubMedCrossRefGoogle Scholar
  42. Jamieson, G.S. and H.D. Fisher (1972). The pinneped eye: A review. In: Functional Anatomy of Marine Mammals. R.J. Harrison, editor. Vol. 1, pp. 245–261. Academic Press, N.Y.Google Scholar
  43. Johnson, C.S. (1967). Sound detection thresholds in marine mammals. In: Marine Bio-Acoustics, W.N. Tavolga, editor, Vol. 2. pp. 247–255, Pergamon Press, Oxford.Google Scholar
  44. Johnson, G.L. (1893). Observations on the refraction and vision of the seal’s eye. Proc. Zool. Soc. Lond. pp. 719–723.Google Scholar
  45. Johnson, L. (1901). Contributions to the comparative anatomy of the mammalian eye, chiefly based on ophthalmoscopic examination. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 194: 1–82.CrossRefGoogle Scholar
  46. Kellogg, W.N. (1961). Porpoises and Sonar. University of Chicago Press, Chicago.Google Scholar
  47. Kellogg, W.N. and C.E. Rice (1964). Visual problem solving in a bottle-nose dolphin. Science (Wash. D.C.) 143: 1052–1055.CrossRefGoogle Scholar
  48. Lawrence, B. and W.E. Schevill (1956). The functional anatomy of the delphinid nose. Bull. Mus. Comp. Zool. Harv. Univ. 114: 103–151.Google Scholar
  49. Lay, D.M. (1972). The anatomy, physiology, functional significance and evolution of the specialized hearing organs of gerbilline rodents. J. Morphol. 138: 41–120.PubMedCrossRefGoogle Scholar
  50. Lay, D.M. (1974). Differential predation on gerbils CMeriones) by the Little Owl, Athene brahma. J. Mammal. 55: 608–614.CrossRefGoogle Scholar
  51. Legouix, J.P. and A. Wisner (1955). Role functionnel des bulles tympaniques geantes de certaines rangeurs (Meriones). Acustica 5: 209–216.Google Scholar
  52. Lythgoe, J.N. (1972). The adaptation of visual pigments to the photic environment. In: Handbk. Sensory Physiol. H.J.A. Dartnall, editor. Vol. VII/I Photochemistry of Vision, pp. 529–565. Springer-Verlag, N.Y.Google Scholar
  53. Lythgoe, J.N. and H.J.A. Dartnall (1970). A deep sea rhodopsin11 in a mammal. Nature (Lond.) 227: 955–956.CrossRefGoogle Scholar
  54. McCormick, J.G., E.G. Wever, J. Palin and S.H. Ridgway (1970). Sound conduction in the dolphin ear. J. Acoust. Soc. Am. 48: 1418–1428.PubMedCrossRefGoogle Scholar
  55. McFarland, W.N. (1971). Cetacean visual pigments. Vision Res. 11: 1065–1076.PubMedCrossRefGoogle Scholar
  56. McFarland, W.N. and F.W. Munz (1975). The visible spectrum during twilight and its implications to vision. In: Light as an Ecological Factor: II, G.C. Evans, R. Bainbridge, and O. Rackham, editors, pp. 249–270. Blackwell Scientific. Oxford.Google Scholar
  57. Manske, U. and U. Schmidt (1976). Visual acuity of the vampire bat, Desmodus rotundus, and its dependence upon light intensity. Z. Tierpsychol. 42: 215–221.PubMedCrossRefGoogle Scholar
  58. Miller, J. (1970). Audibility curve of the chinchilla. J. Acoust. Soc. Am. 48: 513–523.PubMedCrossRefGoogle Scholar
  59. Möhl, B. (1967). Frequency discrimination in the common seal and a discussion of the concept of upper hearing limit. In: Underwater Acoustics Vol. 2. pp. 43–54.Google Scholar
  60. Möhl. B. (1968). Auditory sensitivity of the common seal in air and water. J. Aud. Res. 8: 27–38.Google Scholar
  61. Moushegian, G. and A.L. Rupert (1970). Response diversity of neurons in ventral cochlear nucleus of kangaroo rat to low- frequency tones. J. Neurophysiol. 33: 351–364.PubMedGoogle Scholar
  62. Muntz, W.R.A. (1972). Inert absorbing and reflecting pigments. In: Handbk. Sensory Physiol. VII/1 Photochemistry of vision, pp. 529–565. H.J.A. Dartnall, editor. Springer-Verlag, N.Y.Google Scholar
  63. Norris, K.S. (1969). The echolocation of marine mammls. In: The Biology of Marine Mammals. H.T. Andersen, editor, pp. 391–423. Academic Press. N.Y.Google Scholar
  64. Norris, K.S., W.E. Evans and R.N. Turner (1967). Echolocation in an Atlantic bottle-nose porpoise during discrimination. In: Animal Sonar Systems: Biology and Bionics. R.G. Busnel, editor. Vol. 2 pp. 409–437. Laboratorie de Physiologie Acoustique, INRA-CNRZ, Jouy-en-Josas, France.Google Scholar
  65. Norris, K.S. and G.W. Harvey (1974). Sound transmission in the porpoise head. J. Acoust. Soc. Am. 56: 659–664.PubMedCrossRefGoogle Scholar
  66. Ordy, J.M. and T. Samorajski (1968). Visual acuity and ERG-CFF in relation to the morphologic organization of the retina among diurnal and nocturnal primates. Vision Res. 8: 1205–1225.PubMedCrossRefGoogle Scholar
  67. Payne, R.S. and S. McVay (1971). Songs of humpback whales. Science (Wash. D.C.) 173: 587–597.CrossRefGoogle Scholar
  68. Payne, R.S. and B. Webb (1971). Orientation by means of long range acoustic signalling in baleen whales. In: Orientation: Sensory Basis. H.F. Adler, editor. Ann. Acad. Sci. 188: 110–141.Google Scholar
  69. Pedler, C. and R. Tilley (1969). The retina of a fruit bat (Pteropus giganteus Briinnich). Vision Res. 9: 909–922.PubMedCrossRefGoogle Scholar
  70. Pepper, R.L. and J.V. Simmons, Jr. (1973). In-air visual acuity of the bottle-nosed dolphin. Exp. Neurol. 41: 271–276.PubMedCrossRefGoogle Scholar
  71. Piggins, D.J. (1970) Refraction of the Harp Seal, Pagophilus groenlandicus (Erxleban 1777). Nature (Lond.) 227: 78–79.CrossRefGoogle Scholar
  72. Poulter, T.C. (1963). Sonar signals of the sea lion. Science (Wash. D.C.), 139: 753–755.CrossRefGoogle Scholar
  73. Poulter, T.C. (1966). The use of active sonar by the California sea lion (Zalophus oalifomianus (L)). J. Aud. Res. 6: 165– 173.Google Scholar
  74. Poulter, T.C. (1967). Systems of echolocation. In: Animal Sonar Systems: Biology and Bionics. R-G Busnel editor. Vol. I. pp. 157–186. Laboratorie de Physiologie Acoustique INRA-CNRZ, Jouy-en-Josas, France.Google Scholar
  75. Poulter, T.C. (1969). Sonar of penguins and fur seals. Proc. Calif. Acad. Sci. 36: 363–380.Google Scholar
  76. Poulter, T.C. and R.A. Jennings (1969). Sonar discrimination ability of the California sea lion, Zalophus califomianus. Proc. Calif. Acad. Sci. 36: 381–389.Google Scholar
  77. Price, L. (1963). Threshold testing with Bekesy audiometer. J. Speech Hearing Res. 6: 64–69.PubMedGoogle Scholar
  78. Purves, P.E. (1966). Anatomy and physiology of the outer and middle ear in cetaceans. In: Whales, Dolphins and Porpoises. K.S. Norris, editor, Purves, P.E. 320–376. University of California Press Berkeley.Google Scholar
  79. Purves, P.E. (1967). Anatomical and experimental observations on the cetacean sonar system. In: Animal Sonar Systems: Biology and Bionics. R.-G. Busnel, editor. Vol. I. pp. 197– 270. Laboratorie de Physiologie Acoustique, INRA-CNRZ, Jouy- en-Josas, France.Google Scholar
  80. Putter, A. (1902). Die Augen der Wassersaugethiere. Zool. Jahrb. Abt. Allg. Zool. Physiol. Tiere. 99–402.Google Scholar
  81. Ramprashad, F., S. Corey and K. Ronald (1972). Anatomy of the Seal’s ear (Pagophilus groenlandieus) (Erxleben 1777). In: Functional Anatomy of Marine Mammals. R.J. Harrison, editor. Vol. 1 pp. 263–306. Academic Press, N.Y.Google Scholar
  82. Repenning, C.A. (1972). Underwater hearing in seals: Functional morphology. In: Functional Anatomy of Marine Mammals. R.J. Harrison, Editor. Vol. 1 pp. 307–331. Academic Press, N.Y.Google Scholar
  83. Reysenbach de Haan, F.W. (1957). Hearing in whales. Acta Oto-Laryngol. Suppl. 134: 1–114.Google Scholar
  84. Reysenbach de Haan, F.W. (1966). Listening underwater: Thoughts on sound and cetacean hearing. In: Whales, Dolphins and Porpoises. K.S. Norris, editor, pp. 583–595. University of California Press, Berkeley.Google Scholar
  85. Rivamonte, L.A. (1976). Eye model to account for comparable aerial and underwater acuities of the Bottle-nose dolphin. Netherlands J. Sea Res. 10: 491–498.CrossRefGoogle Scholar
  86. Rodieck, R.W. (1973). The Vertebrate Retina. Freeman and Co., San Francisco.Google Scholar
  87. Sales, G. and D. Pye (1974). Ultrasonic Communication by Animals. Chapman and Hall, London.Google Scholar
  88. Schevill, W.E. and B. Lawrence (1953). Auditory response of a bottle-nose, porpoise, Tursiops trunoatus, to frequencies above 100 kHz. J. Exp. Zool. 124: 147–165.CrossRefGoogle Scholar
  89. Schevill, W.E., W.A. Watkins and R.H. Backus (1964). The 20 cycle signals and Balaenoptera (fin whales). In: Marine Bio-Acoustics. W.N. Tavolga, editor, pp. 147–152. Pergamon Press, Oxford.Google Scholar
  90. Schevill, W.E., W.A. Watkins and C. Ray (1963). Underwater sounds of pinnipeds. Science (Wash. D.C.) 141: 50–53.CrossRefGoogle Scholar
  91. Schevill, W.E., W.A. Watkins, and C. Ray (1966). Analysis of underwater Odobenus calls with remarks on the development and function of the pharyngeal pouches. Zoologica. (N.Y.) 51: 103–111.Google Scholar
  92. Schusterman, R.J. (1967). Perception and determinants of underwater vocalization in the California sea lion. In: Animal Sonar Systems: Biology and Bionics. R-G. Busnel, editor: Vol. I. pp. 535–617. Laboratoire de Physiologie Acoustique, INRA-CNRZ, Jouy-en-Josas. France.Google Scholar
  93. Schusterman, R.J, (1972). Visual acuity in pinnipeds. In: Behavior of Marine Mammals. H.E. Winn and B.L. 011a, editors. Vol. 2, pp. 469–492. Plenum Press, N.Y.Google Scholar
  94. Schusterman, R.J. (1974). Auditory sensitivity of a California sea lion to airborne sound. J. Acoust. Soc. Am. 56: 1248– 1251.Google Scholar
  95. Schusterman, R.J. and R.F. Balliet. (1969). Underwater barking by male sea lions (Zalophus califomianus). Nature (Lond.) 222: 1179–1181.CrossRefGoogle Scholar
  96. Schusterman, R.J., and R.F. Balliet (1970). Conditioned vocalizations as a technique for determining visual acuity thresholds in sea lions. Science (Wash. D.C.) 169: 498–501.CrossRefGoogle Scholar
  97. Schusterman, R.J. and R.F. Balliet (1971). Aerial and underwater visual acuity in the California sea lion (Zalophus calif omianus) as a function of luminance. Ann. N.Y. Acad. Sci. 188: 37–46.PubMedCrossRefGoogle Scholar
  98. Schusterman, R.J., R.F. Balliet, and J. Nixon (1972). Underwater audiogram of the California sea lion by the conditioned vocalization technique. J. Exp. Anal. Behav. 17: 339–350.PubMedCrossRefGoogle Scholar
  99. Schusterman, R.J., R.F. Balliet, and S. St. John (1970). Vocal display underwater by the gray seal, the harbor seal, and the stellar sea lion. Psychon. Sci. Sect. Anim. Physiol. Psychol. 18: 303–305.Google Scholar
  100. Schusterman, R.J. and B. Barrett (1973). Amphibious nature of visual acuity in the Asian “clawless” otter. Nature (Lond.) 244: 518–519.CrossRefGoogle Scholar
  101. Schusterman, R.J., R. Gentry, and J. Schmook (1967). Underwater sound production by captive California sea lions, Zalophus califomianus. Zoologica (N.Y.) 52: 21–24.Google Scholar
  102. Shaver, H.N. and T.C. Poulter (1967). Sea lion echo ranging. J. Acoust. Soc. Am. 42: 428–437.PubMedCrossRefGoogle Scholar
  103. Shaver, H.N. and T.C. Poulter (1968). Sea lion echo ranging. J. Acoust. Soc. Am. 43: 1459.CrossRefGoogle Scholar
  104. Simmons, J.A. (1973). The resolution of target range by echolocating bats. J. Acoust. Soc. Am. 54: 157–173.PubMedCrossRefGoogle Scholar
  105. Simmons, J.A., W.A. Lavender, B.A. Lavender, C.A. Doroshow, S.W. Kiefer, R. Livingston, and A.C. Scallet (1974). Target structure and echo spectral discrimination by echo- locating bats. Science (Wash. D.C.) 186: 1130–1132.CrossRefGoogle Scholar
  106. Simmons, J.A., D.J. Howell, N. Suga (1975). Information content of bat sonar echoes. Am. Sci. 63: 204–215.PubMedGoogle Scholar
  107. Slijper, E.J. (1962). Whales. Basic Books Inc. N.Y.Google Scholar
  108. Stone, J. (1965). A quantitative analysis of the distribution of ganglion cells in the cat’s retina. J. Comp. Neurol. 124: 337–352.PubMedCrossRefGoogle Scholar
  109. Suthers, R.A. (1966). Optomotor responses by echolocating bats. Science (Wash. D.C.) 152: 1102–1104.CrossRefGoogle Scholar
  110. Suthers, R.A. (1970). Vision, olfaction, taste. In: Biology of Bats. W.A. Wimsatt, editor. Vol. II pp. 265–309. Academic Press. N.Y.Google Scholar
  111. Suthers, R., J. Chase and B. Braford (1969). Visual form discrimination by echolocating bats. Biol. Bull. (Woods Hole) 137: 535–546.CrossRefGoogle Scholar
  112. Suthers, R.A., and N. Wallis (1970). The optics of the eyes of echolocating bats. Vision Res. 10: 1165–1173.PubMedCrossRefGoogle Scholar
  113. Terhune, J.M., and K. Ronald (1971). The harp seal, Pagophitus gvoenlandicus (Erxleben, 1777) X. The air audiogram. Can. J. Zool. 49: 385–390.PubMedCrossRefGoogle Scholar
  114. Terhune, J. M. and K. Ronald (1972). The harp seal, Pagophilus groenlandicus (Erxleben, 1777). III. The underwater audio-gram. Can. J. Zool. 50: 565–569.PubMedCrossRefGoogle Scholar
  115. Terhune, J.M. and K. Ronald (1975a). Underwater hearing sensitivity of two ringed seals (Pusa hispida) Can. J. Zool. 53: 227–231.PubMedCrossRefGoogle Scholar
  116. Terhune, J.M. and K. Ronald (1975b). The upper frequency limit of ringed seal hearing. Can. J. Zool. 54: 1226–1229.CrossRefGoogle Scholar
  117. Vakkur, G. and P.O. Bishop. (1963). The schematic eye in the cat. Vision Res. 3: 357–381.CrossRefGoogle Scholar
  118. Walls, G.L. (1942). The Vertebrate Eye and Its Adaptive Radiation. Cranbrook Inst, of Science, Michigan.CrossRefGoogle Scholar
  119. Walls, G.L. and H.D. Judd (1933). The intraocular color filters of vertebrates. Brit. J. Ophthal. 17: 641–675 and 705–725.Google Scholar
  120. Watkins, W.A. and W.E. Schevill (1977). Sperm whale codas. J. Acoust. Soc. Am. 62: 1485–1490.CrossRefGoogle Scholar
  121. Weale, R.A. (1953). The spectral reflectivity of the cat’s tape- turn measured in situ. J. Physiol. (Lond.)ll9: 30–42.Google Scholar
  122. Weale, R.A. (1966). Why does the human retina possess a fovea? Nature (Lond.) 212: 255–256.CrossRefGoogle Scholar
  123. Weale, R.A. (1974). Natural history of optics. In: The Eye. H. Davson and L.T. Graham, Jr. editors. Vol. 6. pp. 1–110. Academic Press, N.Y.Google Scholar
  124. Webster, D.B. (1961). The ear apparatus of the kangaroo rat, Dipodomys. Am. J. Anat. 108: 123–148.PubMedCrossRefGoogle Scholar
  125. Webster, D.B. (1962). A function of the enlarged middle ear cavities of the kangaroo rat, Dipodomys. Physiol. Zool. 35: 248–255.Google Scholar
  126. Webster, D.B. and M. Webster (1971). Adaptive value of hearing and vision in kangaroo rat predator avoidance. Brain Behav. Evol. 4: 310–322.PubMedCrossRefGoogle Scholar
  127. Webster, D.B. and M. Webster. (1972). Kangaroo rat auditory thresholds before and after middle ear reduction. Brain Behav. Evol. 5: 41–53.PubMedCrossRefGoogle Scholar
  128. Webster, D.B. and M. Webster (1975). Auditory systems of Heteromyidae: Functional morphology and evolution of the middle ear. J. Morphol. 146: 343–376.PubMedCrossRefGoogle Scholar
  129. Webster, D.B. and M. Webster (1977). Auditory systems of hetero-myidae: Cochlear diversity. J. Morphol. 152: 153–169.PubMedCrossRefGoogle Scholar
  130. Wever, E.G. and M. Lawrence (1954). Physiological Acoustics. Princeton University Press, Princeton, N.J.Google Scholar
  131. Wever, E.G., J.G. McCormick, J. Palin, and S. H. Ridgway (1971a). The cochlea of the dolphin, Tursiops truncatus: General Morphology. Proc. Natl. Acad. Sci. USA. 68: 2381–2385.PubMedCrossRefGoogle Scholar
  132. Wever, E.G., J.G. McCormick, J. Palin, and S.H. Ridgway (1971b). Cochlea of the dolphin, Tursiops truncatus: The basilar membrane. Proc. Natl. Acad. Sci. USA 68: 2708–2711.PubMedCrossRefGoogle Scholar
  133. Wever, E.G., J.G. McCormick, J. Palin and S.H. Ridgway (1971c). The cochlea of the dolphin, Tursiops truncatus: Hair cells and ganglion cells. Proc. Natl. Acad. Sci. USA 68: 2908–2912.PubMedCrossRefGoogle Scholar
  134. Wever, E.G., J.G. McCormick, J. Palin, and S.H. Ridgway (1972). Cochlear structure in the dolphin, Lagenorhynchus obliquidens. Proc. Natl. Acad. Sci. USA. 69: 657–661.PubMedCrossRefGoogle Scholar
  135. White, D., N. Cameron, P. Spong, and J. Bradford (1971). Visual acuity of the killer whale (Orcinus orca). Exp. Neurol. 32: 230–236.PubMedCrossRefGoogle Scholar
  136. Whitteridge, D. (1965). Geometrical relations between the retina and the visual cortex. In: Mathematics and Computer Science in Biology and Medicine.Google Scholar
  137. John Blackburn, Leeds. Williams, T.C., L.C. Ireland, and J.M. Williams (1973). High altitude flights of the free-tailed bat, Tadarida brasiliensis observed with radar. J. Mammal. 54: 807–821.Google Scholar
  138. Williams, T.C. and J.M. Williams (1970). Radio tracking of homing and feeding flights of a neotropical bat, Phytlostomus hastatus. Anim. Behav. 18: 302–309.CrossRefGoogle Scholar
  139. Yolton, R.L., D.P. Yolton, J. Renz, and G.H. Jacobs. (1974). Pre- retinal absorbance in sciurid eyes. J. Mammal. 55: 14–20.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1978

Authors and Affiliations

  • R. A. Suthers
    • 1
  1. 1.Physiology Section, Medical SciencesIndiana UniversityBloomingtonUSA

Personalised recommendations