Magnetic Excitations

  • M. F. Thorpe
Part of the NATO Advanced Study Institutes Series book series (NSSB, volume 35)


Spin waves (or magnons) are the elementary excitations in spin systems. In these lectures we will develop the basic theory of these excitations using both spin operators and Bose operators. During the last decade, infra-red absorption and liqht scattering, involving the creation of two magnons, have been studied in many materials. These experiments have a number of interesting features that are now understood in rather considerable detail. This is in contrast to other areas that you will hear about at this summer school where the second order scattering is only understood in general phenomenological terms.


Green Function Spin Wave Magnetic Excitation Impurity Mode Spin Wave Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    For a general reference see C. Kittel “Quantum Theory of Solids” (John Wiley and Sons, Inc., New York, 1963), Ch. 4.Google Scholar
  2. 2.
    R. J. Elliott and M. F. Thorpe, J. Appl. Phys. 39, 802 (1968).ADSCrossRefGoogle Scholar
  3. 3.
    F. J. Dyson, Phys. Rev. 102, 1217 (1956)MathSciNetADSMATHCrossRefGoogle Scholar
  4. 3a.
    J. Zittartz, Zeit, für Physik, 184, 506 (1965).ADSMATHCrossRefGoogle Scholar
  5. 4.
    N. D. Mermin and H. Wagner, Phys. Rev. Lett. 17, 1133 (1966).ADSCrossRefGoogle Scholar
  6. 5.
    P. W. Anderson, Phys. Rev. 83, 1260 (1951).ADSMATHCrossRefGoogle Scholar
  7. 6.
    G. F. Koster and J. C. Slater, Phys. Rev. 96, 1208 (1954).ADSMATHCrossRefGoogle Scholar
  8. 7.
    P. G. Dawber and R. J. Elliott, Proc. Phys. Soc. 273, 222 (1963).MATHGoogle Scholar
  9. 8.
    T. Wolfram and J. Callaway, Phys. Rev. 130, 2207 (1963).ADSMATHCrossRefGoogle Scholar
  10. 9.
    Lord Rayleigh, “Theory of Sound” Vol. 1 sec. 90 (Macmillan and Co., London 1877)Google Scholar
  11. 9a.
    E. W. Montroll and G. H. Weiss, Rev. Mod. Phys. 30, 1751 (1958) Appendix A.MathSciNetGoogle Scholar
  12. 10.
    G. F. Koster, T. O. Dimmock, R. G. Wheeler, and H. Statz, “Properties of the 32 Point Groups” (M.I.T. Press, Cambridge, MA, 1963).Google Scholar
  13. 11.
    S.W. Lovesey, Proc. Phys. Soc. Cl, 102 (1968).Google Scholar
  14. 12.
    A. Misetich and R. E. Dietz, Phys. Rev. Letters 17, 392 (1966).ADSCrossRefGoogle Scholar
  15. 13.
    L. D. Landau and E. M. Lifshitz, “Quantum Mechanics”, (Addison-Wesley Pub. Co., Reading, Mass. 1965), Chapter 6.MATHGoogle Scholar
  16. 14.
    F. G. Bass and M. J. Kaganov, J.E.T.P. 10, 986 (1960).Google Scholar
  17. 15.
    P. A. Fleury and R. Loudon, Phys. Rev. 166, 514 (1967).ADSCrossRefGoogle Scholar
  18. 16.
    R. J. Elliott and R. Loudon, Phys. Lett. 3, 189 (1963).ADSCrossRefGoogle Scholar
  19. 17.
    R. Loudon, Advances in Physics 17, 243 (1968).ADSCrossRefGoogle Scholar
  20. 18.
    J. W. Halley, Phys. Rev. 149, 423 (1966).ADSCrossRefGoogle Scholar
  21. 19.
    J. W. Halley in “Light Scattering Spectra of Solids”, Ed. G. B. Wright, (Springer-Verlag, New York, 1969), p. 207.Google Scholar
  22. 20.
    Y. Tanabe, T. Moriya and S. Sugano, Phys. Rev. Lett. 15, 1023 (1965).ADSCrossRefGoogle Scholar
  23. 21.
    M. F. Thorpe, Phys. Rev. B4, 1608 (1977).ADSGoogle Scholar
  24. 22.
    H. A. Bethe, Z. Physik 71, 205 (1931).ADSMATHCrossRefGoogle Scholar
  25. 23.
    M. Wortis, Phys. Rev. 132, 85 (1963).MathSciNetADSCrossRefGoogle Scholar
  26. 24.
    R. Silberglitt and A. B. Harris, Phys. Rev. Lett. 19, 30 (1967).ADSCrossRefGoogle Scholar
  27. 25.
    See for example C. Kittel “Introduction to Solid State Physics” (John Wiley and Sons, Inc., New York, 1967), p. 156.Google Scholar
  28. 26.
    T. Bernstein, A. Misetich and B. Lax, Phys. Rev. B6, 979 (1972).ADSGoogle Scholar
  29. 27.
    R. A. Cowley, W. J. L. Buyers, P. Martel and R. W. H. Stevenson, Phys. Rev. Lett. 23, 86 (1969).ADSCrossRefGoogle Scholar
  30. 28.
    P. A. Fleury, Phys. Rev, Lett. 21, 151 (1968).ADSCrossRefGoogle Scholar
  31. 29.
    R. J. Elliott, M. F. Thorpe. G. F. Imbusch, R. London and J. Parkinson, Phys. Rev. Lett. 24, 147 (1968).ADSCrossRefGoogle Scholar
  32. 30.
    R. J. Elliott and M. F. Thorpe, J. Phys. C2, 1630 (1969).ADSGoogle Scholar
  33. 31.
    S. R. Chinn, H. J. Zeiger and J. R. O’Connor, Phys. Rev. B3, 1709 (1971).ADSGoogle Scholar
  34. 32.
    D. N. Zubarev, Sov. Phys. Uspekhi 3, 320 (1960), see also the lectrues by Sinchcombe in this volume.MathSciNetADSCrossRefGoogle Scholar
  35. 33.
    U. Balucani and V. Togentti, La Rivista del Nuovo Cimento 6, 39 (1976)ADSCrossRefGoogle Scholar
  36. 34.
    A. Oseroff, P. S. Pershan and M. Kestigian, Phys. Rev. 188, 1046 (1969).ADSCrossRefGoogle Scholar
  37. 35.
    M. F. Thorpe, Phys. Rev. Lett. 23, 472 (1969).ADSCrossRefGoogle Scholar
  38. 36.
    R. A. Cowley and W. J. L. Buyers, Rev. Mod. Phys. 44, 506 (1972).ADSCrossRefGoogle Scholar
  39. 37.
    J. Als-Nielson, R. J. Birgeneau and G. Shirane, Phys. Rev. B12, 4963 (1975).ADSGoogle Scholar
  40. 38.
    M. F. Thorpe and R. Alben, J. Phys. C9, 2555 (1976).ADSGoogle Scholar
  41. 39.
    R. J. Elliott, J. N. Krumhansl and P. L. Leath, Rev. Mod. Phys. 46, 465 (1974).MathSciNetADSCrossRefGoogle Scholar
  42. 40.
    R. A. Cowley, G. Shirane, R. J. Birgeneau and H. J. Guggenheim, Phys. Rev. B15, 4292 (1977).ADSGoogle Scholar
  43. 41.
    P. A. Fleury and H. J. Guggenheim, Phys. Rev. B12, 985 (1975).ADSGoogle Scholar
  44. 42.
    M. Buchanan, W. J. L. Buyers, R. J. Elliott, R. T. Harley, W. Hayes, A. M. Perry and I. D. Saville, J. Phys. C5, 2011 (1972).Google Scholar

Copyright information

© Plenum Press, New York 1978

Authors and Affiliations

  • M. F. Thorpe
    • 1
  1. 1.Physics DepartmentMichigan State UniversityEast LansingUSA

Personalised recommendations