Advertisement

Renormalization Group Approach to Dynamic Critical Phenomena

  • Gene F. Mazenko
Part of the NATO Advanced Study Institutes Series book series (NSSB, volume 35)

Abstract

In these lectures I want to discuss the recent developments in dynamic critical phenomena using renormalization group techniques. An attractive feature of this topic is that it brings together ideas from several areas of theoretical physics. We will discuss the renormalization group ideas which have their roots in quantum field theory, the statistical mechanics of phase transformations and the principles of non-equilibrium transport phenomena. I hope to show how these principles can be amalgamated into a single theory describing time dependent processes in systems near second order phase transitions. The theory I will discuss not only leads to a good description of dynamics of phase transitions but has suggested new ideas in treating the frontier problems of turbulence1 and spinodal decomposition. 2

Keywords

Correlation Function Renormalization Group Order Phase Transition Critical Phenomenon Langevin Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. Forster, D. R. Nelson and M. J. Stephen, Phys. Rev. Lett. 36, 867 (1976) and to be published.ADSCrossRefGoogle Scholar
  2. 1a.
    E. D. Siggia, Phys. Rev. A4, 1730 (1977)ADSGoogle Scholar
  3. 2.
    J. W. Cahn, Act. Met. 9, 795 (1961)CrossRefGoogle Scholar
  4. 2a.
    J. W. Cahn, Act. Met. 10, 179 (1962).CrossRefGoogle Scholar
  5. 2b.
    J. W. Cahn and J. E. Hilliard, Act. Met. 19, 151 (1971)CrossRefGoogle Scholar
  6. 2c.
    J. S. Langer, Ann. Phys. (N.Y.) 54, 258 (1969)ADSCrossRefGoogle Scholar
  7. 2d.
    J. S. Langer, Ann. Phys. (N.Y.) 65, 53 (1971)ADSCrossRefGoogle Scholar
  8. 2e.
    J. S. Langer and M. Baron, Ann. Phys. (N. Y.) 78, 421 (1973)ADSCrossRefGoogle Scholar
  9. 2f.
    J. S. Langer and L. A. Turski, Phys. Rev. A8, 3230 (1973)ADSGoogle Scholar
  10. 2g.
    J. S. Langer, M. Bar-on and H. D. MiIler, Phys. Rev. A11, 1417 (1975)ADSGoogle Scholar
  11. 2h.
    K. Kawasaki, Prog. Theo. Phys. 57, 410 (1977).ADSCrossRefGoogle Scholar
  12. 2k.
    K. Kawasaki, Prog. Theo. Phys. 57, 826 (1977).ADSCrossRefGoogle Scholar
  13. 3.
    K. G. Wilson and J. Kogut, Phys. Repts. 12C, 75 (1974).ADSCrossRefGoogle Scholar
  14. 4.
    M. E. Fisher, Rev. Mod. Phys. 46, 597(1974).Google Scholar
  15. 5.
    K. G. Wilson, Rev. Mod. Phys. 47, 773 (1975).ADSCrossRefGoogle Scholar
  16. 6.
    S. Ma, Rev. Mod. Phys. 45, 589 (1973).ADSCrossRefGoogle Scholar
  17. 7.
    S. Ma, Modern Theory of Critical Phenomena, 1976 (Benjamin, New York).Google Scholar
  18. 8.
    P. C. Hohenberg and B. I. Halperin, Rev. Mod. Phys., to be published.Google Scholar
  19. 9.
    L. P. Landau and E. M. Lifshitz, Statistical Physics, 1969 (Pergamon, Oxford).Google Scholar
  20. 10.
    See, for example, C. Kittel, Quantum Theory of Solids, 1963 (Wiley, New York) for an elementary introduction.Google Scholar
  21. 11.
    H. E. Stanley, Phys. Rev. 176, 718 (1968).ADSCrossRefGoogle Scholar
  22. 12.
    H. E. Stanley, Introduction to Phase Transitions and Critical Phenomena (Oxford University Press, New York, 1971).Google Scholar
  23. 13.
    L P. Kadanoff et al., Rev. Mod. Phys. 39, 615 (1967).CrossRefGoogle Scholar
  24. 14.
    L. P. Kadanoff, Physics (N.Y.) 2, 263 (1966).Google Scholar
  25. 15.
    B. Widom, J. Chem. Phys. 43, 3989 (1965).CrossRefGoogle Scholar
  26. 16.
    K. G. Wilson, Phys. Rev. B4, 3174 (1971).ADSGoogle Scholar
  27. 17.
    L. P. Kadanoff, Annals of Phys. (N.Y.), to be published. Th. Niemejer and J. M. J. van Leeuwen, in Phase Transitions and Critical Phenomena, edited by C. Domb and M. S. Green (Academie, New York, 1976), Vol. VI.Google Scholar
  28. 18.
    There are many examples of cross fertalization between different branches of physics via the renormalization group. One particularly interesting example is the recent introduction into quantum field theory of a lattice gauge theory. This theory of strong interactions includes guarks on lattice sites interacting through “strings” which are generalizations of exchange interactions between spins to include gauge invariance. There is hope that this model will lead to an understanding of guark confinement. See K. G. Wilson, Phys. Rev. D10, 2445 (1974).ADSGoogle Scholar
  29. 18a.
    L. P. Kadanoff, Rev. Mod. Phys. 49, 267 (1977).MathSciNetADSCrossRefGoogle Scholar
  30. 19.
    The external field conjugate to the order parameter is also a relevant variable. We assume here for simplicity that the external field is fixed at zero.Google Scholar
  31. 20.
    K. G. Wilson and M. E. Fisher, Phys. Rev. Lett. 28, 240 (1972).ADSCrossRefGoogle Scholar
  32. 21.
    E. Brézin, J. C. LeGuillou, and J. Zinn-Justin, in Phase Transitions and Critical Phenomena, edited by C. Domb and M. S. Green (Akademie, New York, 1976), Vol. VI.Google Scholar
  33. 22.
    L. N. Lipatov, Zh. Eksp. Teor. Fiz. Pis’ma Red 25, 116 (1977).ADSGoogle Scholar
  34. 23.
    E. Brézin, J. C. Le Guillou and J. Zinn-Justin, Phys. Rev. D15, 1544, 1558 (1977).ADSGoogle Scholar
  35. 24.
    E. Brézin, private communication.Google Scholar
  36. 25.
    R. Kubo, in Lectures in Theoretical Physics, Vol. I, chapter 4 (Interscience, 1959).Google Scholar
  37. 26.
    L. P. Kadanoff and P. C. Martin, Ann. Phys. (N.Y.) 24, 419 (1963).MathSciNetADSMATHCrossRefGoogle Scholar
  38. 27.
    P. C. Martin, in Many Body Physics, edited by C. De Wilt and R. Balian, 1968 (Gordon and Breach, N. Y.).Google Scholar
  39. 28.
    R. M. White, Quantum Theory of Magnetism, (McGraw-Hill, New York, 1970)Google Scholar
  40. 29.
    D. Forster, Hydrodynamic Fluctuations, Broken Symmetry and Correlation Functions, 1975 (W. A. Benjamin Inc. Reading, Mass.).Google Scholar
  41. 30.
    If our first choice for ψi (1) has a non-zero average <ψi (1)> we then choose as our variable ψi = ψi (1) < ψi (1)> which does have zero average.Google Scholar
  42. 31.
    We can construct the particle density, momentum density and kinetic energy density from f(x,p) by multiplying by 1, p and p2/2m, respectively, and integrating over p.Google Scholar
  43. 32.
    To keep things simple I am assuming we have a classical theory where the ψ’s commute. This is not a necessary requirement but its elimination would necessitate additional, but essentially unilluminating, further formal development.Google Scholar
  44. 33.
    H. Mori, Progr. Theor. Phys. 33, 423 (1965).ADSMATHCrossRefGoogle Scholar
  45. 34.
    G. F. Mazenko, Phys. Rev. A9, 360 (1974).ADSGoogle Scholar
  46. 35.
    G. F. Mazenko and S. Yip, in Statistical Mechanics, Pt. B, edited by B. J. Berne (Plenum Press, New York, 1977).Google Scholar
  47. 36.
    P. Resibois and M. De Leener, Phys. Rev. 152, 305, 318 (1966) and 178, 806, 819 (1969).ADSMATHCrossRefGoogle Scholar
  48. 37.
    K. Kawasaki, Ann. Phys. (N. Y.) 61, 1 (1970).ADSCrossRefGoogle Scholar
  49. 38.
    This result, of course, follows from the projection operator approach due to Mori33. We wish to show here that the projection operators, which can present some mathematical problems when trying to develop approximation schemes (See G. F. Mazenko, Phys. Rev. A7, 209 (1973) for discussion and further references), are not a necessary part of the development.ADSGoogle Scholar
  50. 39.
    We define Xij -1 by (math)Google Scholar
  51. 40.
    In principle this equation is valid only for t > o. Of course we can change our time origin to to and then it is valid for t > to. We can then let to → -∞. We can then Fourier transform over all times.Google Scholar
  52. 41.
    This is not the actual long time behavior of the velocity autocorrelation function. There is a strong exponential decay for times of order two to three collision times. However for longer times there is a power law decay given by t-d/2 where d is the dimensionality for long times. This long time behavior is associated with non-linear couplings similar to those we will treat in the next section. See for example Y. Pomeau and P. Resibois, Phys. Rept. 19C, 64 (1975)ADSGoogle Scholar
  53. 41a.
    J. R. Dorfman and E. G. D. Cohen, Phys. Rev. Lett. 25, 1257 (1970)ADSCrossRefGoogle Scholar
  54. 41b.
    J. R. Dorfman and E. G. D. Cohen, Phys. Rev. A6, 2247 (1972).Google Scholar
  55. 42.
    There is a very nice discussion of the Drude model in N. W. Ashcroft and N. D. Mermin, Solid State Physics, 1976 (Holt, Rinehart and Winston, New York).Google Scholar
  56. 43.
    These ideas are discussed extensively by Forster in ref. 29.Google Scholar
  57. 44.
    Ma7 has a nice discussion of this point.Google Scholar
  58. 45.
    H. Mori, Prog. Theo. Phys. 28, 763 (1962).ADSMATHCrossRefGoogle Scholar
  59. 46.
    L Van Hove, Phys. Rev. 93, 1374 (1954).CrossRefGoogle Scholar
  60. 47.
    I will, for convenience, usually choose units such that the constant C in the Ornstein-Zemike expression for X(q) (See (2. 23)) can be set equal to 1.Google Scholar
  61. 48.
    B. I. Halperin and P. C. Hohenberg, Phys. Rev. Lett. 19, 700 (1967)ADSCrossRefGoogle Scholar
  62. 48a.
    B. I. Halperin and P. C. Hohenberg, Phys. Rev. 177, 952 (1969).ADSCrossRefGoogle Scholar
  63. 49.
    V. J. Minkewicz, M. F. Collins, R. Nathans, and G. Shirane, Phys. Rev. 182, 624 (1969).ADSCrossRefGoogle Scholar
  64. 50.
    For a list of experimental references see R. Freedman and G. F. Mazenko, Phys. Rev. B13, 4967 (1976).ADSGoogle Scholar
  65. 51.
    J. V. Sengers, in Critical Phenomena, edited by M. S. Green (Academie, New York, 1971)Google Scholar
  66. 52.
    M. S. Green, J. Chem. Phys. 20, 1281 (1952)MathSciNetADSCrossRefGoogle Scholar
  67. 52a.
    M. S. Green, J. Chem. Phys. 22, 398 (1954).MathSciNetADSCrossRefGoogle Scholar
  68. 53.
    R. W. Zwanzig, Phys. Rev. 124, 983 (1961).ADSMATHCrossRefGoogle Scholar
  69. 54.
    H. Mori and H. Fujisaka, Prog. Theor. Phys. 49, 764 (1973).ADSCrossRefGoogle Scholar
  70. 55.
    K. Kawasaki, in Critical Phenomena, edited by M. S. Green (Academic, New York, 1971).Google Scholar
  71. 56.
    In this case ψ¡ does not satisfy (4.4).Google Scholar
  72. 57.
    Mi (t) can be identified with with those Fourier compo nents of M¡ (t) less than the cut-off Λ.Google Scholar
  73. 58.
    S. Ma and G. F. Mazenko, Phys. Rev. Lett. 33, 1383 (1974),ADSCrossRefGoogle Scholar
  74. 58a.
    S. Ma and G. F. Mazenko, Phys. Rev. B11, 4077 (1975).ADSGoogle Scholar
  75. 59.
    B. I. Halperin, P. C. Hohenberg and S. Ma, Phys. Rev. Lett. 29, 1548 (1972),ADSCrossRefGoogle Scholar
  76. 59a.
    B. I. Halperin, P. C. Hohenberg and S. Ma Phys. Rev. B10, 139 (1974)ADSGoogle Scholar
  77. 59b.
    B. I. Halperin, P. C. Hohenberg and S. Ma Phys. Rev. B13, 4779 (1976).Google Scholar
  78. 60.
    See the discussion in ref. 8.Google Scholar
  79. 61.
    This follows from (4.14) by expressing Jij and Mi(t) in terms of their Fourier transforms, expanding in powers of the wavenumber, and transforming back to coordinate space.Google Scholar
  80. 62.
    K. Kawasaki, Phys. Rev. 150, 291 (1966), in Statistical Mechanics, edited by S. A. Rice, K. F. Freed, and J. C. Light (University of Chicago, 1972) and refs. 37 and 55.MathSciNetADSCrossRefGoogle Scholar
  81. 63.
    M. Fixman, J. Chem. Phys. 36, 310 (1962)ADSCrossRefGoogle Scholar
  82. 63a.
    L. P. Kadanoff and J. Swift, Phys. Rev. 166, 89 (1968).ADSCrossRefGoogle Scholar
  83. 63b.
    R. A. Ferrell, Phys. Rev. Lett. 24, 1169 (1970).ADSCrossRefGoogle Scholar
  84. 63c.
    R. Zwanzig, in Statistical Mechanics, edited by S. A. Rice, K. F. Freed, and J. C. Light, (University of Chicago Press, Chicago, 1972).Google Scholar
  85. 64.
    P. C. Martin, E. D. Siggia, and H. A. Rose, Phys. Rev. A8, 423 (1973).ADSGoogle Scholar
  86. 65.
    H. K. Janssen, Z. Physik B23, 377(1976),ADSGoogle Scholar
  87. 65a.
    R. Bausch, H. J. Janssen and H. Wagner, Z. Physik, B24, 113 (1976).ADSGoogle Scholar
  88. 66.
    K. Kawasaki, Prog. Theor. Phys. 52, 1527 (1974).ADSCrossRefGoogle Scholar
  89. 67.
    C. De Dominicis, Nuovo Cimento Lett. 12, 576 (1975)CrossRefGoogle Scholar
  90. 67a.
    C. De Dominicis, E. Brezin and J. Zinn-Justin, Phys. Rev. B12, 4945 (1975).ADSGoogle Scholar
  91. 68.
    G. F. Mazenko, M. Nolan and R. Freedman, Phys. Rev. B, to be published, discuss situations where the fluctuation — dissipation theorem may have a slightly different form.Google Scholar
  92. 69.
    We have already investigated the behavior of u and ro under the RG in the static case. Since we generate exactly the same statics from our equation of motion we would obtain the same recursion relations.Google Scholar
  93. 70.
    M. J. Nolan and G. F. Mazenko, Phys. Rev. B15, 4471 (1977).ADSGoogle Scholar
  94. 71.
    B. I. Halperin, P. C. Hohenberg, and E. D. Siggia, Phys. Rev. Lett. 32, 1289 (1974)ADSCrossRefGoogle Scholar
  95. 71a.
    B. I. Halperin, P. C. Hohenberg, and E. D. Siggia, Phys. Rev. B13, 1299 (1976).ADSGoogle Scholar
  96. 71b.
    P. C. Hohenberg, B. I. Halperin, and E. D. Siggia, Phys. Rev. B14, 2865 (1976)ADSGoogle Scholar
  97. 71c.
    E. D. Siggia, Phys. Rev. B11, 4736 (1975).ADSGoogle Scholar
  98. 72.
    B. I. Halperin, P. C. Hohenberg, and E. D. Siggia, Phys. Rev. Lett. 32, 1289 (1974)ADSCrossRefGoogle Scholar
  99. 72a.
    B. I. Halperin, P. C. Hohenberg, and E. D. Siggia, Phys. Rev. B13, 1299 (1976).ADSGoogle Scholar
  100. 73.
    R. Freedman and G. F. Mazenko, Phys. Rev. Lett. 34, 1575 (1975)ADSCrossRefGoogle Scholar
  101. 73a.
    R. Freedman and G. F. Mazenko, Phys. Rev. B13, 4967 (1976).ADSGoogle Scholar
  102. 74.
    Ref. 73 and E. D. Siggia, B. I. Halperin, and P. C. Hohenberg, Phys. Rev. B13, 2110 (1976).ADSGoogle Scholar
  103. 75.
    I. M. Gel’fand and A. M. Yaglom, J. Math. Phys. 1, 18 (1960).Google Scholar

Copyright information

© Plenum Press, New York 1978

Authors and Affiliations

  • Gene F. Mazenko
    • 1
  1. 1.The James Franck Institute and Department of PhysicsThe University of ChicagoChicagoUSA

Personalised recommendations