Optical Response of Quantum Crystals

  • Isaac F. Silvera
Part of the NATO Advanced Study Institutes Series book series (NSSB, volume 35)


Quantum solids are crystals in which, even at T = 0K, the atoms of the ordered array (or molecules) undergo large rms displacements or zero-point motion (ZPM) about their equilibrium lattice sites1. The ZPM in these crystals, in comparison to normal crystals, is not small relative to the nearest neighbor distance, RO. The dynamical aspects of ordinary crystals can be treated classically or quantum mechanically in the quasi-harmonic approximation. Quantum crystals must be treated quantum mechanically because the zero-point energy is comparable to the static lattice energy. This in itself would present no difficulty if potentials were harmonic, however real potentials are highly anharmonic and for quantum crystals the usual per turbative treatment of anharmonicity breaks down. New theoretical approaches which have been developed in the last decade to handle the dynamical problems will be discussed in the first section.


Optical Response Quantum Parameter Pair Correlation Function Free Rotor Solid Helium 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A number of excellent reviews on quantum solids exist, for example: R.A. Guyer “The Physics of Quantum Solids”, Sol.State Physics, Vol.23, Academic Press New York 1969;Google Scholar
  2. 1a.
    H.R. Iyde “Solid Helium” in Rare Gas Solids ed. M.L. Klein and J.A. Venables, Academic Press, New York 1976;Google Scholar
  3. 1b.
    also see the articles by H. Horner and by T. Koehler in “Dynamical Properties of Solids” Vols. I and II, G.K. Horton and A.A. Maradudin, eds., North Holland Publ. Co. Amsterdam, 1974.Google Scholar
  4. 2.
    For a review of solid hydrogen see I.F. Silvera “The Solid Hydrogens: Properties and Excitations” Proceedings of Low Temp. Conf. 14, Vol.5, North Holland Publ. Co., Amsterdam 1975.Google Scholar
  5. 3.
    Data for helium is from R.D. Etters and R.L. Danilowicz, Phys.Rev. A, 16 98(1973);Google Scholar
  6. 3a.
    for rare gas solids and H2 and D2, V. Goldman, Phys.Rev. 174, 1041 (1968) and private communication.ADSCrossRefGoogle Scholar
  7. 4.
    M. Nielsen, Phys.Rev. B7, 1626 (1973).ADSGoogle Scholar
  8. 5.
    See for example V.V. Goldman, G.K. Horton and M.L. Klein, Phys.Rev. Lett. 24, 1424 (1970).ADSCrossRefGoogle Scholar
  9. 6.
    H. Horner, J. Low Temp. Phys. 8, 511 (1972).ADSCrossRefGoogle Scholar
  10. 7.
    See for example A.B. Harris, Phys.Rev. B1, 1881 (1970) and references therein.ADSGoogle Scholar
  11. 8.
    T. Nakamura, Prog.Theor. Phys. (Kyoto) 14, 135 (1955).ADSCrossRefGoogle Scholar
  12. 9.
    J.W. Stewart, J.Phys.Chem.Sol. 1, 146 (1956).ADSCrossRefGoogle Scholar
  13. 10.
    See for example, R.G. Gordon, Adv.Mag. Resonance 3, 1 (1968).Google Scholar
  14. 11.
    R.E. Slusher and C.M. Surko, Phys.Rev. B13, 1086 (1976);ADSGoogle Scholar
  15. 11a.
    C.M. Surko and R.E. Slusher, Phys.Rev. B13, (1976);p.1095.ADSGoogle Scholar
  16. 12.
    See for example G.W. Chantry, “Submillimetre spectroscopy”, Academic Press, New York, 1971.Google Scholar
  17. 13.
    I.F. Silvera, Rev.Sci. Inst. 41, 1592 (1970).ADSCrossRefGoogle Scholar
  18. 14.
    I.F. Silvera, W.N. Hardy, and J.P. McTague, Phys.Rev. B5, 1578, (1972).ADSGoogle Scholar
  19. 15.
    P.A. Fleury and J.P. McTague, Phys.Rev.Lett. 31, 914 (1973).ADSCrossRefGoogle Scholar
  20. 16.
    N.R. Werthamer, Phys.Rev. 185, 348 (1969).ADSCrossRefGoogle Scholar
  21. 17.
    D.W. Oxtoby and W.M. Gelbart, J.Mol.Phys., 29, 1569 (1975).ADSCrossRefGoogle Scholar
  22. 18.
    S.H. Walmsley and J.A. Pople, Mol.Phys. 8, 345 (1964).ADSCrossRefGoogle Scholar
  23. 19.
    W.N. Hardy, I.F. Silvera and J.P. McTague, Phys.Rev. 12, 753 (1975).ADSCrossRefGoogle Scholar
  24. 20.
    See for example, J.C. Raich and R.D. Etters, Phys.Rev. 168, 425 (1968).ADSCrossRefGoogle Scholar
  25. 21.
    C.F. Coll, III and A.B. Harris, Phys.Rev. B4, 2781 (1971).ADSGoogle Scholar
  26. 22.
    A.J. Berlinsky and A.B. Harris, Phys.Rev. B4, 2808 (1971).ADSGoogle Scholar
  27. 23.
    C.F. Coll and A.B. Harris, Phys.Rev. B2, 1176 (1970).ADSGoogle Scholar
  28. 24.
    P.J. Berkhout and I.F. Silvera, Comm. on Physics 2, 109 (1977).Google Scholar
  29. 25.
    W.N. Hardy, I.F. Silvera, K.N. Klump and O. Schnepp, Phys.Rev. Lett. 21, 291 (1968).ADSCrossRefGoogle Scholar
  30. 26.
    R. Jochemsen, A.J. Berlinsky, V.V.Goldman and I.F. Silvera, submitted for publication.Google Scholar
  31. 27.
    O. Schnepp, J.Chem.Phys. 46, 3983 (1967).ADSCrossRefGoogle Scholar
  32. 28.
    M.E. Rose, “Elementary Theory of Angular Momentum”, John Wiley and Sons, New York 1957.MATHGoogle Scholar
  33. 29.
    R. Jochemsen, F. Verspaandonk, A.J. Berlinsky and I.F. Silvera, to be published.Google Scholar

Copyright information

© Plenum Press, New York 1978

Authors and Affiliations

  • Isaac F. Silvera
    • 1
  1. 1.Natuurkundig Laboratorium der Universiteit van AmsterdamAnsterdam-CThe Netherlands

Personalised recommendations