Two Roton Raman Scattering in Superfluid He4

  • Cherry Ann Murray
Part of the NATO Advanced Study Institutes Series book series (NSSB, volume 35)


The possibility of using Raman scattering as a probe for studying the elementary excitations of superfluid helium was first suggested by Halley1 in 1968. Raman scattering in helium is a second order process in which two excitations of nearly equal and opposite momenta are created in the liquid. The spectrum of scattered light at an energy loss E is a measure of the density of two excitation states with zero total wavevector and energy E.1,2 The primary contribution comes from the roton region of the dispersion curve. At low temperatures this consists of a well defined line near E = 2Δ, where Δ is the energy of the roton minimum. I will concentrate on the 2-roton light scattering. A discussion of the spectrum in other energy regions can be found in reference 3.


Dispersion Curve Line Shape Saturated Vapor Pressure Energy Shift Cutoff Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J.W. Halley, Bull. Am. Phys. Soc. 13, 398 (1968)Google Scholar
  2. 1a.
    and J.W. Halley, Phys. Rev. 181, 338 (1969)ADSCrossRefGoogle Scholar
  3. 2.
    M.J. Stephen, Phys. Rev. 187, 279 (1969)ADSCrossRefGoogle Scholar
  4. 3.
    T.J. Greytak, Physics of Quantum Fluids, 1970, Tokyo Summer Lectures in Theoretical and Experimental Physics. R. Kubo and F. Takano, editors (Tokyo, Syokabo)Google Scholar
  5. 4.
    T.J. Greytak and J. Yan, Phys. Rev. Lett. 22, 987 (1969)ADSCrossRefGoogle Scholar
  6. 5.
    J. Ruvalds and A. Zawadowsky, Phys. Rev. Lett. 25, 333 (1970)ADSCrossRefGoogle Scholar
  7. 6.
    F. Iwamoto, Prog. of Theoretical Phys. (Japan) 44, 1135 (1970)ADSCrossRefGoogle Scholar
  8. 7.
    T.J. Greytak, R. Woerner, J. Yan, and R. Benjamin, Phys. Rev. Lett. 25, 1547 (1970)ADSCrossRefGoogle Scholar
  9. 8.
    R.A. Cowley and A.D.B. Woods, Can. J. Phys. 49, 177 (1971)ADSCrossRefGoogle Scholar
  10. 9.
    C.A. Murray, R.L. Woerner, and T.J. Greytak, J. Phys. C: Solid State Phys. 8, L90 (1975)ADSCrossRefGoogle Scholar
  11. 10.
    R.L. Woerner and T.J. Greytak, Rev. Sci. Ins. 47, 383 (1976)ADSCrossRefGoogle Scholar
  12. 11.
    A.D.B. Woods, P.A. Hilton, R. Scherm, and W.G. Stirling, J. Phys. C: Solid State Phys. 10, L45 (1977)ADSCrossRefGoogle Scholar
  13. 12.
    R.L. Woerner and M.J. Stephen, J. Phys. C: Solid State Phys. 8, L464 (1975)ADSCrossRefGoogle Scholar
  14. 13.
    R.A. Cowley, J. Phys. C: Solid State Phys. 5, L287 (1972)ADSCrossRefGoogle Scholar
  15. 14.
    D. Baeriswyl, Phys. Lett. 41A, 297 (1972)ADSGoogle Scholar

Copyright information

© Plenum Press, New York 1978

Authors and Affiliations

  • Cherry Ann Murray
    • 1
  1. 1.Department of PhysicsMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations