Spinodal Decomposition: An Outline

  • Horia Metiu
Part of the NATO Advanced Study Institutes Series book series (NSSB, volume 35)


If we attempt to dissolve phenol in water, for example, at room temperature, we shall not succeed. Small droplets of a phenol-water solution of concentration c1 will float in a solution of phenol-water of concentration c2. If we heat up the liquid the droplets disappear at a certain temperature TO. We shall refer to this phenomenon as mixing. Once the temperature is above TO, we can attempt to cool the system and repeat the experiment in reverse. If, for simplicity, we assume that nucleation does not exist, we see that the mixture separates into droplets whenever the system is cooled below TS. This phenomenon, of unmixing of two liquids upon cooling, is called spinodal decomposition; TS is the spinodal temperature. If we repeat these experiments for different proportions, c, of phenol and water and plot TO(c) and TS(c), we obtain the phase diagram shown in Fig.1. In the spinodal region, located below TS(c), the system separates spontaneously into droplets; above TO(c) the system is homogeneous. For the mixing experiment we start with a system consisting of droplets in the state A (Fig.1) and instantaneously increase the temperature to that corresponding to B. In this state the droplets are no longer stable and the material moves out of them to create a homogeneous state.


Diffusion Coefficient Spinodal Decomposition Acta Meet Probable Evolution Thermodynamic Instability 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    G. Mazenko, see the lecture in this volume.Google Scholar
  2. [2]
    J. S. Langer, Physica 73, 61 (1974).ADSCrossRefGoogle Scholar
  3. [3]
    M. Hillert, Acta Met. 9, 525 (1961).CrossRefGoogle Scholar
  4. [3a]
    J. W. Cahn, Acta Met. 9, 795 (1961)CrossRefGoogle Scholar
  5. [3b]
    J. W. Cahn, Acta Met. 10, 179 (1962).CrossRefGoogle Scholar
  6. [4]
    H. E. Cook, Acta Met. 18, 297 (1970).CrossRefGoogle Scholar
  7. [5]
    H. S. Langer, Ann. Bays. (N.Y.) 65, 53 (1971).ADSCrossRefGoogle Scholar
  8. [6]
    H. Metiu, K. Kitahara and J. Eoss, J. Chem. Phys. 63, 5116 (1975).ADSCrossRefGoogle Scholar
  9. [7]
    H. Metiu, K. Kitahara and J. Ross, J. Chem. Phys. 64, 292 (1976)ADSCrossRefGoogle Scholar
  10. [7a]
    H. Metiu, K. Kitahara and J. Ross, J. Chem. Phys. , 65, 393 (1976).ADSCrossRefGoogle Scholar
  11. [8]
    H. Metiu, unpublished.Google Scholar
  12. [9]
    H. Metiu, Chem. Phys. Lett. (in print).Google Scholar
  13. [10]
    We give only a few recent referencesGoogle Scholar
  14. [10] a)
    A. J. Schwartz, J. S. Huang and W. I. Goldburg, J. Chem. Phys. 62, 1847 (1975)ADSCrossRefGoogle Scholar
  15. [10] aa)
    A. J. Schwartz, J. S. Huang and W. I. Goldburg, J. Chem. Phys. 63, 499 (1975)ADSCrossRefGoogle Scholar
  16. [10] ab)
    N. Wong and C. M. Knobler, J. Chem. Phys. 66, 4707 (1977).ADSCrossRefGoogle Scholar
  17. [10] b)
    R. Acuña and A. Bonfiglio, Acta Metal. 22, 399 (1974).CrossRefGoogle Scholar
  18. [10] c)
    J. Vrijen and C. van Dijk in Fluctuations, Instabilities and Phase Transitions, ed. T. Riste (Plenum, New York, 1975).Google Scholar
  19. [11]
    J. W. Cahn, Trans. Metal. Soc. AIME 242, l66 (1968).Google Scholar
  20. [12]
    H. Metiu, K. Kitahara and J. Ross in Studies in Statistical Mechanics (in press).Google Scholar
  21. [13]
    W. M. Gelbart, see lecture in this volume.Google Scholar
  22. [14]
    D. W. Oxtoby and W. M. Gelbart, J. Chem. Phys. 60, 3359 (1974)ADSCrossRefGoogle Scholar
  23. [14a]
    D. W. Oxtoby and W. M. Gelbart, Phys. Rev. A 10, 738 (1974)ADSCrossRefGoogle Scholar
  24. [14b]
    L. A. Reith and H. L. Swinney, Phys. Rev. A 12, 1094 (1975).ADSCrossRefGoogle Scholar
  25. [15]
    H. Metiu and G. Korzeniewski, Chem. Phys. Lett. (submitted); H. Metiu, J. Chem. Phys. (submitted).Google Scholar
  26. [l6]
    R. Zwanzig in Statistical Mechanics, ed. S. A. Rice, K. F. Freed and J. C. Light (U. of Chicago, 1972).Google Scholar
  27. [17]
    J. S. Langer and L. A. Turski, Phys. Rev. A 8, 3230 (1975).ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1978

Authors and Affiliations

  • Horia Metiu
    • 1
  1. 1.Department of ChemistryUniversity of CaliforniaSanta BarbaraUSA

Personalised recommendations