Second-Order Light Scattering by Classical Fluids I: Collision Induced Scattering

  • William M. Gelbart
Part of the NATO Advanced Study Institutes Series book series (NSSB, volume 35)


In this and the following lecture I shall deal with two important examples of higher-than-first-order light scattering from classical gases and liquids. The term “first-order” means here that (1) light has been scattered only once by the sample (i.e., doubly-and multiply-scattered waves make negligible contributions to the detached signal), and (2) the polarizabilities of the molecules are not distorted through interaction with the electronic charge clouds of neighboring molecules. Virtually all discussions in the journal and monograph literature1 have dealt only with the first-order scattering of light, e.g. critical point fluctuations and sound propagation via Rayleigh-Brillouin spectra, molecular reorientation in liquids via Raman line shapes, and macromolecular weight distributions, conformational changes and diffusion.


Density Fluctuation Scattered Field Polarizability Density Atomic Fluid Observe Cross Section 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    For a most recent and comprehensive account of light scattering theory and its applications, see Dynamic Light Scattering, “by B. J. Berne and R. Pecora” (John Wiley, 1976).Google Scholar
  2. 2.
    J. D. Jackson, Classical Electrodynamics (John Wiley, 1962).Google Scholar
  3. 3.
    M. Born and E. Wolf, Principles of Optics (Pergamon, 1964).Google Scholar
  4. 4.
    B. U. Felderhof, Physica 76 486 (1974).ADSCrossRefGoogle Scholar
  5. 5.
    D. Bedeaux and P. Mazur, Physica 67 23 (1973).ADSCrossRefGoogle Scholar
  6. 6.
    D. W. Oxtoby, unpublished Ph.D. dissertation (entitled “I. Optical Properties of Simple Fluids. II. Mode Coupling Theory of Critical Transport”), University of California, Berkeley, 1975.Google Scholar
  7. 7.
    P. Mazur, Advan. Chem. Phys. 1 309 (1958).MathSciNetCrossRefGoogle Scholar
  8. 8.
    R. K. Bullough, Phil. Trans. Roy. Soc. (London) A258 387 (1965).ADSGoogle Scholar
  9. 9.
    M. J. Stephen, Phys. Rev. 187 279 (1969).ADSCrossRefGoogle Scholar
  10. 10.
    D. W. Oxtoby and W. M. Gelbart, J. Chem. Phys. 60 3359 (1974).ADSCrossRefGoogle Scholar
  11. 11.
    G. B. Benedek, in Statistical Physics, Phase Transitions and Superfluidity, Vol. 2, M. Chrétien et al., eds. (Gordon and Breach, 1968).Google Scholar
  12. 12.
    A. Ben-Reuven and N. D. Gershon, J. Chem. Phys. 51 893 (1969).ADSCrossRefGoogle Scholar
  13. 13.
    see, for example, T. Keyes and B. Ladanyi, Mol. Phys. 6 1685 (1976).Google Scholar
  14. 14.
    H. Mori, Progr. Theoret. Phys. 33 423 (1965).ADSMATHCrossRefGoogle Scholar
  15. 15.
    L. P. Kadanoff and J. Swift, Phys. Rev. 166 89 (1968).ADSCrossRefGoogle Scholar
  16. 16.
    F. Garisto and R. Kapral, J. Chem. Phys. 64 3826 (1976).ADSCrossRefGoogle Scholar
  17. 17.
    K. Kawasaki, Ann. Phys. (NY) 61 1 (1970).ADSCrossRefGoogle Scholar
  18. 18.
    T. Keyes and I. Oppenheim, Phys. Rev. A7 1384 (1973).ADSGoogle Scholar
  19. 19.
    See, for example, the discussion and references given in H. L. Swinney and D. L. Henry, Phys. Rev. A8 2586 (1973).ADSGoogle Scholar
  20. 20.
    See A. D. B. Woods in Quantum Fluids, ed by D. F. Brewer (North-Holland, 1966) for neutron scattering evidence of multiple excitation contributions to S(K, Ω) for liquid He.Google Scholar
  21. 21.
    M. Born and K. Huang, Dynamical Theory of Crystal Lattices (Oxford, 1968).Google Scholar
  22. 22.
    J. W. Halley, Phys. Rev. 181 338 (1969).ADSCrossRefGoogle Scholar
  23. 23.
    T. J. Greytak and J. Yan, Phys. Rev. Lett. 22 987 (1969).ADSCrossRefGoogle Scholar
  24. 24.
    J. P. McTague, P. A. Fleury and D. B. DuPré, Phys. Rev. 188 303 (1969).ADSCrossRefGoogle Scholar
  25. 25.
    D. W. Oxtoby and W. M. Gelbart, Mol. Phys. 29 1569 (1975).ADSCrossRefGoogle Scholar
  26. 26.
    A. D. Buckingham, Trans. Faraday Soc. 52 1035 (1956).CrossRefGoogle Scholar
  27. 27.
    D. W. Oxtoby and W. M. Gelbart, Mol. Phys. 30 535 (1975).ADSCrossRefGoogle Scholar
  28. 28.
    R. E. Sitter Jr., and R. P. Hurst, Phys. Rev. A5 5 (1972).ADSGoogle Scholar
  29. 29. (a)
    E. F. O’Brien, V. P. Gutschick, V. McKoy and J. P. Mctague, Phys. Rev. A8 690 (1973);ADSGoogle Scholar
  30. 29. (b)
    P. J. Fortune, P. R. Certain and L. W. Bruch, Chem. Phys. Lett. 27 233 (1974).ADSCrossRefGoogle Scholar
  31. 30.
    P. Lallemand, J. Phys. Paris, 33 C1–257 (1972).CrossRefGoogle Scholar
  32. 31.
    J. M. Parson, P. E. Siska and Y. T. Lee, J. Chem. Phys. 56 1511 (1972).ADSCrossRefGoogle Scholar
  33. 32. (a)
    B. J. Alder, J. J. Weis and H. L. Strauss, Phys. Rev. A7 281 (1973)ADSGoogle Scholar
  34. 32. (b)
    B. J. Alder, H. L. Strauss and J. J. Weis, J. Chem. Phys. 59 1002 (1973)ADSCrossRefGoogle Scholar
  35. 32. (c)
    J. Beers, B. J. Alder and H. L. Strauss, to be published.Google Scholar
  36. 33.
    B. J. Berne, M. Bishop and A. Rahman, J. Chem. Phys. 58 2696 (1973).ADSCrossRefGoogle Scholar
  37. 34.
    F. J. Pinski and C. E. Campbell, to be published, and seminar by Pinski in this volume.Google Scholar
  38. 35.
    H. Levine and G. Birnbaum, J. Chem. Phys. 55 2914 (1971).ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1978

Authors and Affiliations

  • William M. Gelbart
    • 1
  1. 1.Department of ChemistryUniversity of CaliforniaLos AngelesUSA

Personalised recommendations