Advertisement

Borate Glasses pp 215-226 | Cite as

Laser-Induced Fluorescence Line Narrowing of Eu3+ in Lithium Borate Glass

  • M. J. Weber
  • J. Hegarty
  • D. H. Blackburn
Part of the Materials Science Research book series (MSR, volume 12)

Abstract

Laser-induced fluorescence line narrowing has recently been used to investigate the local environment and interactions of paramagnetic ions in glass. Since the resulting spectra are sensitive to structural modifications, this technique was applied to study lithium borate glass. In alkali borate glasses, the relative numbers of BO3 triangles and BO4 tetrahedra and the existence of subliquidus immiscibility are dependent upon the mole fraction of alkali oxide. Structural changes associated with these properties are, in principle, detectable using the approach of fluorescence line narrowing. Evidence of these effects are presented in this paper.

Keywords

Excitation Energy Borate Glass Lithium Borate Radiative Transition Probability Nonresonant Excitation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. L. Griscom, “Borate Glass Structure”, pp. 11–139, this volume.Google Scholar
  2. 2.
    P. K. Gallagher, C. R. Kurkjian, and P. M. Bridenbaugh, Phys. Chem. Glasses 6, 95 (1965).Google Scholar
  3. 3.
    T. Kushida and E. Takushi, Phys. Rev. B12, 824, (1975).CrossRefGoogle Scholar
  4. 4.
    Yu. V. Denisov and V. A. Kizel, Optics and Spectroscopy 23, 251 (1967).Google Scholar
  5. 5.
    L. A. Riseberg, Phys. Rev. Lett. 28, 789 (1972); Phys. Rev. A7, 671 (1973).CrossRefGoogle Scholar
  6. 6.
    C. Brecher and L. A. Riseberg, Phys. Rev. B13, 81 (1976).CrossRefGoogle Scholar
  7. 7.
    For a review of fluorescence line narrowing studies in glasses and references, see M. J. Weber, Colloque de Lyon, J. Phys. (Paris), in press.Google Scholar
  8. 8.
    C. Brecher, L. A. Riseberg, and M. J. Weber, Proc. 12th Rare Earth Research Conference, Vol. 1, 351 (1976).Google Scholar
  9. 9.
    P. J. Bray and J. G. O’Keefe, Phys. Chem. Glasses 4, 37 (1963).Google Scholar
  10. 10.
    R. R. Shaw and D. R. Uhlmann, J. Amer. Ceram. Soc. 51, 377 (1968).CrossRefGoogle Scholar
  11. 11.
    M. J. Weber, J. A. Paisner, S. S. Sussmann, W. M. Yen, L. A. Riseberg, and C. Brecher, J. Luminescence 12, 729 (1976).CrossRefGoogle Scholar
  12. 12.
    O. J. Sovers, M. Ogawa, and T. Yoshioka, Proc. 12th Rare Earth Research Conference, Vol. 2, 728 (1976).Google Scholar
  13. 13.
    N. Motegi and S. Shionoya, J. Luminescence 8, 1 (1973).CrossRefGoogle Scholar
  14. 14.
    M. J. Weber, Phys. Rev. B4, 2932 (1971).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1978

Authors and Affiliations

  • M. J. Weber
    • 1
  • J. Hegarty
    • 2
  • D. H. Blackburn
    • 3
  1. 1.Lawrence Livermore LaboratoryUniversity of CaliforniaLivermoreUSA
  2. 2.Department of PhysicsUniversity of WisconsinMadisonUSA
  3. 3.Inorganic Glass SectionNational Bureau of StandardsUSA

Personalised recommendations