The Role of Calcium in Blood Platelet Function

  • Maurice B. Feinstein


The platelet occupies a central position in the hemostatic reactions which protect the integrity of the vascular system in the case of injury. The arrest of bleeding occurs as the result of a complex series of responses involving contractile activity of the blood vessel wall, the formation of a platelet plug at the site of injury, the coagulation of plasma due to the conversion of fibrinogen to fibrin, and the contraction or retraction of the clot. One of the most significant properties of the platelet is its ability to adhere avidly to subendothelial tissue exposed by damage to the endothelium (Baumgartner, 1972). This interaction with connective tissue sets in motion a remarkable series of physical and biochemical transformations of the platelet resulting in a rapid formation of the platelet plug and consolidation of the clot. The clotting process is activated in parallel to platelet activation and is in fact facilitated substantially by properties of the platelets themselves (Walsh, 1974).


Platelet Aggregation Secretory Granule Platelet Function Human Platelet Adenylate Cyclase Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abramowitz, J. W., Stracher, A., and Detwiler, T. C., 1975, A second form of actin: platelet microfilaments depolymerized by ATP and divalent cations, Arch. Biochem. Biophys. 167: 230.Google Scholar
  2. Adelstein, R. S., and Conti, M. A., 1975, Phosphorylation of platelet myosin increases actin-activated myosin ATPase activity, Nature 256: 597.PubMedGoogle Scholar
  3. Andersson, R., and Nilsson, K., 1972, Cyclic AMP and calcium in relaxation in intestinal smooth muscle, Nature (New Biol.) 238: 119.Google Scholar
  4. Assaf, S. A., 1977, Human platelet protein kinase phosphorylation reaction with platelet membrane and cytoplasmic enzymes and crystallization of a cyclic AMP-independent protein kinase, Ann. N.Y. Acad. Sci. 283: 159.Google Scholar
  5. Babcock, D. F., First, N. L., and Lardy, H. A., 1976, Action of the ionophore A23187 at the cellular level. Separation of effects at the plasma and mitochondrial membranes, J. Biol. Chem. 251: 3881.Google Scholar
  6. Bailin, G., 1977, Adenosine 3:5T -monophosphate-dependent protein kinase phosphorylation of a bovine cardiac actin complex, Biophys. J. 17: 159a.Google Scholar
  7. Barber, A. J., and Jamieson, G. A., 1970, Isolation and characterization of plasma membranes from human blood platelets, J. Biol. Chem. 245: 6357.Google Scholar
  8. Baumgartner, H. R., 1972, Platelet interaction with vascular structures, Thromb. Biath. Eaemorrh. Suppl. 51: 161.Google Scholar
  9. Baumgartner, H. R., and Born, G. V. R., 1968, Effects of 5-hydro- xytryptamine on platelet aggregation, Nature 218: 137.PubMedGoogle Scholar
  10. Behnke, 0., Kristenson, B., and Nielson, L. E., 1971, Electron microscopical identification of platelet contractile proteins, in “Platelet Aggregation” (J. Caen, ed.), pp. 3–13, Masson et Cie, Paris.Google Scholar
  11. Best, L. C., Martin, T. J., Russell, R. G. G., and Preston, F. E., 1977, Prostacyclin increases cyclic AMP levels and adenylate cyclase activity in platelets, Nature 267: 850.PubMedGoogle Scholar
  12. Bettex-Galland, M., and Luscher, E. F., 1965, Thrombosthenin, the contractile protein from blood platelets and its relation to other contractile proteins, Adv. Protein Chem. 20: 1.Google Scholar
  13. Bills, T. K., Smith, J. B., and Silver, M. T., 1976, Metabolism of [li+C] arachidonic acid by human platelets, Bioohim. Biophys. Acta 424: 303.Google Scholar
  14. Blackwell, G. J., Duncombe, W. G., Flower, R. J., Parsons, M. F., and Vane, J. R., 1977, The distribution and metabolism of arachidonic acid in rabbit platelets during aggregation and its modification by drugs, Brit. J. Pharmacol. 59: 353.Google Scholar
  15. Booyse, F. M., Guliani, D., Marr, J. J., and Rafelson, M. E. Jr., 1973, Cyclic adenosine 3T,5f-monophosphate dependent protein kinase of human platelets: membrane phosphorylation and regulation of platelet function, Ser. Haemat. 6: 351.Google Scholar
  16. Born, G. V. R., 1972, Current ideas on the mechanism of platelet aggregation, Ann. N.Y. Acad. Sci. 201: 4.Google Scholar
  17. Boyle-Kay, M., and Fudenberg, H. H., 1973, Inhibition and reversal of platelet activation by cytochalasin B or colcemid, Nature 244: 288.PubMedGoogle Scholar
  18. Charles, M. A., Lawecki, J., Pictet, R., Grodsky, G. M., 1975, Interrelationships of glucose, cyclic adenosine 31:5 -monophosphate and calcium, J. Biol. Chem. 250: 6134.Google Scholar
  19. Charo, I., Detwiler, T. C., Feinman, R. D., Lubowsky, J., and Zabinski, M. P., 1976a, A new intracellular calcium antagonist has been used to investigate platelet secretion, aggregation, and malondialdehyde formation, Circ. 54; 0762.Google Scholar
  20. Charo, I., Feinman, R. D., and Detwiler, T. C., 1976b, Inhibition of platelet secretion by an antagonist of intracellular calcium, Biochem. Biophys. Res. Commun. 72: 1462.Google Scholar
  21. Chater, B. V., 1976, The role of membrane bound complement in the aggregation of mammalian platelet by collagen, Brit. J. Haematol. 32: 515.Google Scholar
  22. Cinti, D. L., and Feinstein, M. B., 1976, Platelet cytochrome P-450; A possible role in arachidonate-induced aggregation, Bioohim. Biophys. Res. Commun. 73: 171.Google Scholar
  23. Claesson, H.-E., and Mahlmsten, C., 1977, On the relationship of prostaglandin endoperoxide G2 and cyclic nucleotides in platelet function, Eur. J. Biochem. 76: 277.Google Scholar
  24. Cochrane, D. E., and Douglas, W. W., 1974, Calcium induced extrusion of secretory granules (exocytosis) in mast cells exposed to 48/80 or ionophores A23187 and X-537A, Proc. Nat. Acad. Sci. U.S.A. 74: 408.Google Scholar
  25. Cochrane, D. E., Douglas, W. W., Mouri, T., and Nakarato, Y., 1975, Calcium and stimulus-secretion coupling in the adrenal medulla: contrasting stimulating effects of the ionophores X–537A and A23187 on catecholamine output, J. Physiol. ( London ) 252: 363.Google Scholar
  26. Cohen, I., Kaminski, E., and deVries, A., 1973, Actin-linked regulation of the human platelet contractile system, FEBS Lett. 34: 315.PubMedGoogle Scholar
  27. Crawford, N., 1976, Platelet microfilaments and microtubules, in “Platelets in Biology and Pathology” ( J. L. Gordon, ed.), pp. 121–133, North Holland Publishing Co., Amsterdam.Google Scholar
  28. Cutler, L. S., Rodan, G. A., and Feinstein, M. B., 1978, Cyto- chemical localization of adenylate cyclase and ATPase activity in the dense tubular system of human platelets, submitted for publication.Google Scholar
  29. Davies, T., Davidson, M. M. L., McClenaghan, M. D., Say, A., and Haslam, R. J., 1976, Factors affecting platelet cyclic GMP levels during aggregation induced by collagen and by arachidonic acid, Thrombosis Res. 9: 387.Google Scholar
  30. Day, H. J., and Holmsen, H., 1971a, Adenine nucleotides and platelet function, Ser. Haematol. 4: 28.Google Scholar
  31. Day, H. J., and Holmsen, H., 1971b, Concepts of the blood platelet release reaction, Ser. Eaemat. 4: 3.Google Scholar
  32. Derksen, A., and Cohen, P., 1975, Patterns of fatty acid release from endogenous substrates by human platelet homogenates and membranes, J. Biol. Chem. 250: 9342.Google Scholar
  33. Des Prez, R. M., and Marney, S. R., Jr., 1971, Immunological reactions involving platelets, in “The Circulating Platelet” (S. A. Johnson, ed.), pp. 415–471, Academic Press, New York.Google Scholar
  34. Detwiler, T. C., 1972, Control of energy metabolism in platelets. The effect of thrombin and cyanide on glycolysis, Bioehim. Biophys. Acta 256: 163.Google Scholar
  35. Detwiler, T. C., and Feinman, R. D., 1973, Kinetics of the thrombin- induced release of calcium ( II) by platelets, Biochemistry 12: 282.Google Scholar
  36. Douglas, W. W., 1968, Stimulus-secretion coupling: the concept and clues from chromaffin and other cells, Brit. J. Pharmacol. 34: 451.Google Scholar
  37. Droller, M. J., 1976, Thrombin-induced platelet prostaglandin and cyclic AMP production and a possible intrinsic modulation of platelet function, Scand. J. Haematol. 17: 167.Google Scholar
  38. Engelhard, V. H., Plut, D. A., and Storm, D. R., 1976, Subcellular location of adenylate cyclase in rat cardiac muscle, Bioehim. Biophys. Acta 451: 48.Google Scholar
  39. Evans, G., Packham, M. A., Nishizawa, E. E., Mustard, J. F., and Murphy, E. A., 1968, The effect of acetylsalicylic acid on platelet function, J. Exp. Med. 128: 877.Google Scholar
  40. Fabiato, A., and Fabiato, F., 1977, Calcium release from the sarcoplasmic reticulum, Ciro. Res. 40: 119.Google Scholar
  41. Feinman, R. D., and Detwiler, T. C., 1974, Platelet secretion induced by divalent cation ionophores, Nature 249: 172.PubMedGoogle Scholar
  42. Feinman, R. D., and Detwiler, T. C., 1975, Absence of a requirement for extracellular calcium for secretion from platelets, Thrombosis Res. 7: 677.Google Scholar
  43. Feinstein, M. B., and Paimre, M., 1969, Pharmacological action of local anesthetics on excitation-contraction coupling in striated and smooth muscle, Fed. Proc. 28: 1643.Google Scholar
  44. Feinstein, M. B., and Fraser, C., 1975, Human platelet secretion and aggregation induced by calcium ionophores. Inhibition by PGEi and dibutyryl cyclic AMP, J. gen. Physiol. 66: 561.Google Scholar
  45. Feinstein, M. B., Fiekers, J., and Fraser, C., 1976, An analysis of the mechanism of local anesthetic inhibition of platelet aggregation and secretion, J. Pharmacol. Exp. Ther. 197: 215.Google Scholar
  46. Feinstein, M. B., Henderson, E., and Shaafi, R. I., 1977a, The effects of alterations of transmembrane Na+ and K+ gradients by ionophores (nigericin, monensin) on serotonin transport in human blood platelets, Bioehim. Biophys. Acta 468: 284.Google Scholar
  47. Feinstein, M. B., Becker, E. L., and Fraser, C., 1977b, Thrombin, collagen and A23187 stimulated endogenous platelet arachidonate metabolism: Differential inhibition by PGE, local anesthetics and a serine-protease inhibitor, Prostaglandins, in press.Google Scholar
  48. Ford, L. E., and Podolsky, R. J., 1972, Calcium uptake and force development by skinned muscle fibers in EGTA buffered solutions, J. Physiol. ( London ) 223: 1.Google Scholar
  49. Foreman, J. C., Mongar, J. L., and Gomperts, B. D., 1973, Calcium ionophores and movement of calcium ions following the physiological stimulus to a secretory process, Nature 245: 249.PubMedGoogle Scholar
  50. Friedman, F., and Detwiler, T. C., 1975, Stimulus-secretion coupling in platelets. Effects of drugs on secretion of adenosine 5f-triphosphate, Biochemistry 14: 1315.PubMedGoogle Scholar
  51. Fukami, M. H., Holmsen, H., and Bauer, J., 1976, Thrombin-induced oxygen consumption, malonyldialdehyde formation and serotonin in human platelets, Biochim. Biophys. Acta 428: 253.Google Scholar
  52. Gardos, G., 1958, The function of calcium in the potassium permeability of human erythrocytes, Biochim. Biophys. Acta 30: 653.Google Scholar
  53. Gear, A. R. L., and Schneider, W., 1975, Control of platelet gly- cogenolysis activation of phosphorylase kinase by calcium, Biochim. Biophys. Acta 392: 111.Google Scholar
  54. Gerday, C., and Gillis, J. M., 1977, The possible role of par- valbumins in the control of contraction, J. Physiol. 258: 96 P.Google Scholar
  55. Gerrard, J. M., White, J. G., and Rao, G. H. R., 1974, Effects of the ionophore A23187 on blood platelets. II. Influence on ultrastructure, Amer. J. Path. 77: 151.Google Scholar
  56. Gerrard, J. M., White, J. G., Rao, G. H. R., Krivit, W., and Witkop, C. J., 1975, Labile aggregation stimulating substance (LASS): The factor from storage pool deficient platelets correcting defective aggregation and release of aspirin treated normal platelets, Brit. J. Haematol. 29: 657.Google Scholar
  57. Gerrard, J. M., White, J. G., and Rao, G. H. R., 1976, Localization of prostaglandin production in the platelet dense tubular system, Amer. J. Path. 83: 283.Google Scholar
  58. Glass, D. B., Gerrard, J. M., White, J. G., and Goldberg, N. D., 1975, Cyclic GMP formation in human platelets aggregated by arachidonic acid, Blood 46: 1033.Google Scholar
  59. Gordon, J. L., and Maclntrye, D. E., 1974, Inhibition of collagen induced platelet aggregation by aspirin, Brit. J. Pharmacol. 50: 469P.Google Scholar
  60. Gorman, R. R., Bundy, G. L., Peterson, D. C., Sun, F. F., Miller, 0. V., and Fitzpatrick, F. A., 1977a, Inhibition of human platelet thromboxane synthetase by 9,ll-azoprosta–5,13-dienoic acid, Proc. Nat. Acad. Sci. U. S. A. 74: 4007.Google Scholar
  61. Gorman, R. R., Bunting, S., and Miller, 0. V., 1977b, Modulation of human platelet adenylate cyclase by prostacyclin ( PGX ), Prostaglandins 13: 377.Google Scholar
  62. Grette, K., 1962, Studies on the mechanism of thrombin-catalyzed hemostatic reactions in blood platelets, Acta Physiol. Scand. 56 (Suppl. 195): 1.Google Scholar
  63. Grette, K., 1963, Relaxing factor in extracts of blood platelets and its function in the cells, Nature 198: 488.PubMedGoogle Scholar
  64. Gryglewski, R. J., Bunting, S., Moncada, S., Flower, R. J., and Vane, J. R., 1976, Arterial walls are protected against deposition of platelet thrombi by a substance (prostaglandin X) which they make from prostaglandin endoperoxides, Prostaglandins 12: 685.PubMedGoogle Scholar
  65. Haeusler, G., 1972, Differential effect of verapamil on excitation- contraction coupling in adrenergic nerve terminals, J. Pharmacol. Exp. Ther. 180: 672.Google Scholar
  66. Hamberg, M., and Samuelsson, B., 1973, Detection and isolation of an endoperoxide intermediate in prostaglandin biosynthesis, Proo. Nat. Acad. Sci. U. S. A. 70: 899.Google Scholar
  67. Hamberg, M., and Samuelsson, B., 1974, Prostaglandin endoperoxides, novel transformations of arachidonic acid in human platelets, Proo. Nat. Acad. Sci. U. S. A. 71: 3400.Google Scholar
  68. Hamberg, M., Svensson, J., Wakabayashi, T., and Samuelsson, B., 1974a, Isolation and structure of two prostaglandin endoperoxides that cause platelet aggregation, Proc. Nat. Acad. Sci. U. S. A. 71: 345.Google Scholar
  69. Hamberg, M., Svensson, J., and Samuelsson, B., 1974b, Prostaglandin endoperoxides. A new concept concerning the mode of action and release of prostaglandins, Proc. Nat. Acad. Sci. U. S. A. 71: 3824.Google Scholar
  70. Hamberg, M., Svensson, J., and Samuelsson, B., 1975, Thromboxanes: a new group of biologically active compounds derived from prostaglandin endoperoxides, Proc. Nat. Acad. Sci. U. S. A. 72: 2994.Google Scholar
  71. Harris, G. L., Cone, D. H., and Crawford, N., 1974, Effect of divalent cations and chelating agents on the ATPase activity of platelet contractile protein, thrombosthenin, Biochem. Med. 11: 10.Google Scholar
  72. Haslam, R., and Lynham, J. A., 1976, Increased phosphorylation of r. specific blood platelet proteins in association with the release reaction, Biochem. Soc. Transactions 4: 694.Google Scholar
  73. Haslam, R. J., and Taylor, A., 1971, Role of cyclic 31,51-adenosine monophosphate in platelet aggregation, in “Platelet Aggregation” (J. Caen, ed.), pp. 85–93, Masson et Cie, Paris.Google Scholar
  74. Haslam, R. J., Davidson, M. M. L., and McClenaghan, M. D., 1975, Cytochalasin B, the blood platelet release reaction and cyclic GMP, Nature 253: 455.PubMedGoogle Scholar
  75. Henson, P. M., Gould, D., and Becker, E. L., 1976, Activation of stimulus-specific serine esterases (proteases) in the initiation of platelet secretion. I. Demonstration with organophosphorus inhibitors, J. Exper. Med. 144: 1657.Google Scholar
  76. Holmsen, H., Day, H. J., and Stormorken, H., 1969, The blood platelet release reaction, Scand. J. Haematol. ( Suppl. ) 8: 1.Google Scholar
  77. Holmsen, H., 1974, Are platelet shape change, aggregation and release reaction tangible manifestations of one basic platelet function., in “Platelets, Production, Function, Transfusion and Storage” (M. Baldini and S. Ellie), pp. 207–220, Grune and Stratton, New York.Google Scholar
  78. Home, W. C., and Singer, E. R., 1976, The effect of aggregating agents and drugs on the membrane potential of washed human platelets, Fed. Proc. 35: 1451.Google Scholar
  79. Hovig, T., 1963, Release of platelet aggregating substance (adenosine diphosphate) from rabbit platelets induced by saline “extract” of tendons, Thvomb. Diath. Haemovvh. 9: 264.Google Scholar
  80. Izrael, V., Zawilska, K., Jaisson, F., Levy-Toledano, S., and Caen, J., 1974, Effect of a fast removal of plasmatic ADP by the creatine phosphate and creatine phosphokinase system on human platelet function in vitro, in “Platelets: Production, Function, Transfusion and Storage” (M. G. Baldini and S. Ebbe), pp. 187–196, Grune and Stratton, Inc., New York.Google Scholar
  81. Kaser-Glanzmann, R., Jakábová, M., George, J. N., and Lüscher, E. F., 1977, Stimulation of calcium uptake in platelet membrane vesicles by adenosine 3,5f-cyclic monophosphate and protein kinase, Biochim. Biophys. Acta 466: 429.Google Scholar
  82. Kinlough-Rathbone, R. L., Chahil, A., Packham, M. A., Riemers, H.-J., and Mustard, J. F., 1975, Effects of ionophore A23187 on thrombin-degranulated washed rabbit platelets, Thvomb. Res. 7: 435.Google Scholar
  83. Kinlough-Rathbone, R. L., Riemers, H.-J., Mustard, J. F., and Packham, M. A., 1976, Sodium arachidonate can induce platelet shape change and aggregation which are independent of the release reaction, Science 192: 1011.PubMedGoogle Scholar
  84. Kirchberger, M. A., Tada, M., and Katz, A. M., 1972, Adenosine 3!:51-monophosphate-dependent protein kinase-catalyzed phosphorylation reaction and its relationship to calcium transport in cardiac sarcoplasmic reticulum, J. Biol. Chem. 249: 6166.Google Scholar
  85. Kunze, H., and Vogt, W., 1971, Significance of phospholipase A for prostaglandin formation, Ann. N. Y. Acad. Sci. 180: 123.Google Scholar
  86. Kunze, H., Nahas, N., Traynor, J. R., and Wurl, M., 1976, Effects of local anesthetics on phospholipases, Biochim. Biophys. Acta 441: 93.Google Scholar
  87. Lagarde, M., and Dechavanne, M., 1977, Thrombin decreases platelet cyclic AMP in the absence of prostaglandin synthesis, Biomedicine 27: 110.PubMedGoogle Scholar
  88. Lages, B., Scrutton, M. C., Holmsen, H., Day, H. J., and Weiss, H. J., 1975, Metal ion content of gel-filtered platelets from patients with storage pool disease, Blood 46: 119.PubMedGoogle Scholar
  89. Lapetina, E. G., Schmitges, C. J., Chandrabose, K., and Cuatrecasas, P., 1977, Cyclic adenosine 3?,5-monophosphate and prostacyclin inhibit membrane phospholipase activity in platelets, Biochem. Biophys. Res. Comrnun. 76: 828.Google Scholar
  90. Lazarides, E., 1976, Actin, a-actinin and tropomyosin interaction in the structural organization of actin filaments in nonmuscle cells, J. Cell Biol. 68: 202.PubMedGoogle Scholar
  91. Le Breton, G. C., Dinerstein, R. J., Roth, L. J., and Feinberg, H., 1976, Direct evidence for intracellular divalent cation redistribution associated with platelet shape change, Biochem. Biophys. Res. Commun. 71: 362.Google Scholar
  92. Le Breton, G. C., and Dinerstein, R. J., 1977, Effect of the calcium antagonist TMB–6 on intracellular calcium distribution associated with platelet shape change, Thrombosis Res. 10: 521.Google Scholar
  93. Lyons, R. M., Stanford, N., andMajerus, P. W., 1975, Thrombin- induced protein phosphorylation in human platelets, J. Clin. Invest. 56: 924.Google Scholar
  94. Macfarlane, D. E., and Mills, D. C. B., 1975, The effects of ATP on platelets: evidence against the central role of released ADP in primary aggregation, Blood 46: 309.PubMedGoogle Scholar
  95. Malik, M. N., Rosenberg, S., Detwiler, T. C., and Stracher, A., 1974, Role of Ca2+ in the allosteric regulation of platelet acto- myosin, Bioohem. Biophys. Res. Commun. 61: 1071.Google Scholar
  96. Mahlmsten, C., Hamberg, M., Svensson, J., and Samuelsson, B., 1975, Physiological role of an endoperoxide in human platelets: hemostatic defect due to platelet cyclo-oxygenase deficiency, Proc. Nat. Acad. Sci. U. S. A. 72: 1446.Google Scholar
  97. Marcus, A. J., 1969, Platelet function, N. Eng. J. Med. 280: 1213.Google Scholar
  98. Martin, J. H., Carson, F. L., and Race, G. J., 1974, Calcium-containing platelet granules, J. Cell. Biol. 60: 775.Google Scholar
  99. Massini, P., and Luscher, E. F., 1972, On the mechanism by which cell contact induces the release reaction of blood platelets: the effect of cationic polymers, Thromb. Diath. Haemorrh. 27: 121.Google Scholar
  100. Massini, P., and Luscher, E. F., 1974, Some effects of ionophores for divalent cations on blood platelets. Comparison with the effects of thrombin, Bioohim. Biophys. Acta 372: 109.Google Scholar
  101. Miller, J. L., Katz, A. J., and Feinstein, M. B., 1975, Plasmin inhibition of thrombin-induced platelet aggregation, Thromb. Diath. Haemorrh. 33: 286.Google Scholar
  102. Miller, 0. V., Johnson, R. A., and Gorman, R. R., 1977, Inhibition of PGEi-stimulated cAMP accumulation in human platelets by thromboxane A2, Prostaglandins 13: 599.Google Scholar
  103. Mills, D. C. B., and Smith, J. B., 1971, The control of platelet responsiveness by agents that influence cyclic AMP metabolism, Ann. N. Y. Acad. Sci. 201: 391.Google Scholar
  104. Minkes, M., Stanford, N., Shi, M. M. Y., Roth, G. J., Raz, A., Needleman, P., and Majerus, P. N., 1977, Cyclic adenosine 31,5T- monophosphate inhibits the availability of arachidonate to prostaglandin synthetase in human platelet suspensions, J. Clin. Invest. 59: 449.Google Scholar
  105. Moncada, S., Bunting, S., Mullane, K., Thorogood, P., Vane, J. R., Raz, A., and Needleman, P., 1977, Imidazole: a selective inhibitor of thromboxane synthetase, Prostaglandins 13: 611.PubMedGoogle Scholar
  106. Morse, E. E., Jackson, D. P., and Conley, C. L., 1965, Role of platelet fibrinogen in the reactions of platelets to thrombin, J. Clin. Invest. 44: 809.Google Scholar
  107. Mürer, E. H., 1969, Thrombin induced release of calcium from blood platelets, Science 166: 623.PubMedGoogle Scholar
  108. Mürer, E. H., 1972, Factors influencing the initiation and the extrusion phase of the platelet release reaction, Biochim. Biophys. Acta 261: 435.Google Scholar
  109. Mürer, E. H., and Holme, R., 1970, A study of the release of calcium from human blood platelets and its inhibition by metabolic inhibitors N-ethylmaleimide and aspirin, Biochim. Biophys. Acta 222: 197.Google Scholar
  110. Mürer, E. H., Davenport, K., Rausch, M. A., Day, H. J., 1975, Metabolic aspects of the secretions of stored compounds from blood platelets. V. Effect of ionophore A23187 on washed platelets, Biochim. Biophys. Acta 451: 1.Google Scholar
  111. Mürer, E. H., Stewart, G. J., Rausch, M. A., and Day, H. J., 1976, Calcium ionophore A23187 (Eli Lilly) effect on platelet function, structure and metabolism, Thromb. Diath. Haemorrh. 34: 72.Google Scholar
  112. Mustard, J. F., and Packham, M. A., 1970, Factors influencing platelet function: adhesion, release, and aggregation, Pharmacol. Rev. 22: 97.Google Scholar
  113. Mustard, J. F., Perry, D. W., Kinlough-Rathbone, R. L., and Packham, M. A., 1975, Factors responsible for ADP-induced release reaction of human platelets, Amer. J. Physiol. 228: 1757.Google Scholar
  114. Nachman, R. L., and Weksler, B., 1972, The platelet as an inflammatory cell, Ann. N. Y. Acad. Sci. 201: 131.Google Scholar
  115. Needleman, P., Minkes, M., and Raz, A., 1976a, Thromboxanes: selective bio-synthesis and distinct biological properties, Science 193: 163.PubMedGoogle Scholar
  116. Needleman, P., Moncada, S., Bunting, S., Vane, J. R., Hamberg, M., and Samuelsson, B., 1976b, Identification of an enzyme in platelet microsomes which generates thromboxane A2 from prostaglandin endoperoxides, Nature 261: 558.PubMedGoogle Scholar
  117. Needleman, P., Raz, A., Ferendelli, J. A., and Minkes, M., 1977, Application of imidazole as a selective inhibitor of thromboxane synthetase in human platelets, Proc. Nat. Acad. Sci. U. S. A. 74: 1716.Google Scholar
  118. Nelsestuen, G. L., Broderius, M., and Martin, G., 1976, Role of y-carboxyglutamic acid. Cation specificity of prothrombin and factor X-phospholipid binding, J. Biol. Chem. 251: 6886.Google Scholar
  119. Northover, B. J., 1977, Effect of indomethacin and related drugs on the calcium ion-dependent secretion of lysosomal and other enzymes by neutrophil polymorphonuclear leukocytes in vitro3 Brit. J. Pharmacol. 59: 253.Google Scholar
  120. Nugteren, D. H., 1975, Arachidonate lipoxygenase in blood platelets, Biochim. Biophys. Acta 326: 448.Google Scholar
  121. Nugteren, D. H., and Hazelhof, E., 1973, Isolation and properties of intermediates in prostaglandin biosynthesis, Biochim. Biophys. Acta 326: 448.Google Scholar
  122. Nyman, D., 1977, Collagen-induced platelet aggregation: evidence of several mechanisms for the induction of platelet release by collagen, Thromb. Res. 10: 743.Google Scholar
  123. O’Brien, J. R., 1968, Effect of salicylates on human platelets, Lancet 1968i: 779.Google Scholar
  124. Odell, T. T., and Upton, A. C., 1955, Distribution of Calcium45 in platelets and bone marrow of rats, Acta Haematol. 14: 291.PubMedGoogle Scholar
  125. Oelz, 0., Oelz, R., Knapp, H. R., Sweetman, B. J., and Oates, J. A., 1977, Biosynthesis of prostaglandin D2. I. Formation of prostaglandin D2 by human platelets, Prostaglandins 13: 225.Google Scholar
  126. Oplatka, A., Gadasi, H., Tirosh, R., Laiyed, Y., Muhlrad, A., and Liron, N., 1974, Demonstration of mechanochemical coupling in systems containing actin, ATP and non-aggregating active myosin derivatives, J. Meohanoohem. Cell Motility 2: 295.Google Scholar
  127. Oschman, J. L., Hall, T. A., Peters, P. D., and Wall, B. J., 1974, Microprobe analysis of membrane-associated calcium deposits in squid giant axon, J. Cell Biol. 61: 156.PubMedGoogle Scholar
  128. Packham, M. A., Guccione, M. A., Chang, P.-L., and Mustard, J. F., 1973, Platelet aggregation and release: effects of low concentra-tions of thrombin or collagen, Amer. J. Physiol. 225: 38.Google Scholar
  129. Packham, M. A., Kinbough-Rathbone, R. L., Riemers, H.-J., Scott, S., and Mustard, J. F., 1977, Mechanisms of platelet aggregation independent of adenosine diphosphate, in “Prostaglandins in Hema-tology” ( M. J. Silver, J. B. Smith, and J. J. Kocsis), pp. 247–276, Spectrum Publications, Inc., New York.Google Scholar
  130. Papahadjopoulos, D., Vail, W. J., Newton, C., Nir, S., Jacobson, K., Poste, G., and Lazo, R., 1977, Studies on membrane fusion. III. The role of calcium-induced phase changes, Bioohim. Biophys. Acta 465: 579.Google Scholar
  131. Pickett, W. C., and Cohen, P., 1976, Mechanism of the thrombin- mediated burst in oxygen consumption by human platelets, J. Biol. Chem. 251: 2536.Google Scholar
  132. Pickett, W. C., Jesse, R. L., and Cohen, P., 1977, Initiation of phospholipase A2 activity in human platelets by the calcium ion ionophore A23187, Bioohim. Biophys. Acta 486: 209.Google Scholar
  133. Pollard, T. D., Fujiwara, K., Niederman, R., and Maupin-Szamier, P., 1976, Evidence for the role of cytoplasmic actin and myosin in cellular structure and motility, in “Cell Motility. Cold Spring Harbor Conference on Cell Proliferation,” Vol. 2 (R. Goldman, T. Pollard, J. Rosenbaum), pp. 475–485, Cold Spring Harbor, New York.Google Scholar
  134. Poulsen, J. H., and Williams, J. A., 1977, Effects of the calcium ionophore A23187 on pancreatic acinar cell membrane potentials and amylase release, J. Physiol. 264: 323.PubMedGoogle Scholar
  135. Puszkin, E., Puszkin, S., and Aledort, L. M., 1971, Colchicine- binding protein from human platelets and its effect on muscle myosin and platelet myosin-like thrombosthenin-M, J. Biol. Chem. 246: 271.Google Scholar
  136. Puszkin, S., Kochwa, S., and Rosenfield, R. E., 1975, Regulatory complex of human platelet actomyosin, J. Cell Biol. 67: 346a.Google Scholar
  137. Puszkin, S., Lin, E., Kochwa, S., and Rosenfield, R. E., 1976, Immunological, physiochemical, and Ca2+ binding properties of platelet and muscle regulatory proteins bound by lytron parti-cles, Fed. Proc. 35: 299.Google Scholar
  138. Ray, K. P., and England, P. J., 1976, Phosphorylation of the in-hibitory subunit of troponin and its effect on the calcium de-pendence of cardiac myofibril adenosine triphosphatase, FEBS Letters 70: 11.PubMedGoogle Scholar
  139. Reddy, Y. S., and Wyborny, L. E., 1976, Phosphorylation of guinea pig cardiac natural actomyosin and its effect on ATPase activity, Biochem. Biophys. Res. Commun. 73: 703.Google Scholar
  140. Reed, P. W., 1977, Calcium ionophore activity of prostaglandin endoperoxides and stabilized analogues of PGH2, Fed. Proa. 36: 673.Google Scholar
  141. Ridgway, E. B., Gilkey, J. C., and Jaffe, L. F., 1977, Free calcium increases explosively in activating medaka eggs, Proc. Nat. Acad. Sci. U. S. A. 74: 623.Google Scholar
  142. Robblee, L. S., Shepro, D., Belamarich, F. A., and Towle, C., 1973, Platelet calcium flux and the release reaction, Ser. Haemat. 6: 311.Google Scholar
  143. Robblee, L. S., Shepro, D., and Belamarich, F. A., 1973, Calcium uptake and associated adenosine triphosphatase activity of isolated platelet membranes, J. gen. Physiol. 61: 462.Google Scholar
  144. Rodan, G. A., and Feinstein, M. B., 1976, Interrelationships between Ca2+ and adenylate and guanylate cyclases in the control of platelet secretion and aggregation, Proc. Nat. Acad. Sci. U. S. A. 73: 1829.Google Scholar
  145. Rubin, R. P., 1974, “Calcium and the Secretory Process,” Plenum Press, New York.Google Scholar
  146. Russell, J. T., Hansen, E. L., and Thorn, N. A., 1974, Calcium and stimulus-secretion coupling in the neurohypophysis. III. Ca2+ ionophore (A–23187)-induced release of vasopressin from isolated rat neurohypophyses, Acta Endocrinol. ( Kbh ) 77: 443.Google Scholar
  147. Salganicoff, L., Hebda, P. A., Yandrasitz, J., and Fukami, M. H., 1975, Subcellular fractionation of pig platelets, Biochim. Biophys. Acta 385: 294.Google Scholar
  148. Salzman, E. W., 1972, Cyclic AMP and platelet function, New Eng. J. Med. 286: 358.Google Scholar
  149. Sato, T., Herman, L., Chandler, J. A., Stracher, A., and Detwiler, T. C., 1975, Localization of a thrombin-sensitive calcium pool in platelets, J. Eistochem. Cytochem. 23: 103.Google Scholar
  150. Scarpa, A., Baldassare, J., and Inesi, G., 1972, The effect of calcium ionophore on fragmented sarcoplasmic reticulum, J. gen. Physiol. 60: 735.Google Scholar
  151. Schoene, N., and Iacono, J. M., 1973, Metabolism of linoleic and arachidonic acids in blood platelets, Fed. Proc. 32: 119.Google Scholar
  152. Schroeder, T. E., and Strickland, D. L., 1974, Ionophore A23187, calcium and contractility in frog eggs, Exp. Cell Res. 83: 139.Google Scholar
  153. Seegers, W. H., 1971, Role of platelets in blood clotting, in “The Circulating Platelet” (S. A. Johnson, ed.), pp. 301–354, Academic Press, New York.Google Scholar
  154. Seegers, W. H., Heene, D., Marciniak, E., Ivanovic, N., andGoogle Scholar
  155. Caldwell, M. J., 1965, Sensitivity of thrombin and autothrombin C to selected enzyme inhibitors, Life Sci. 4: 425.PubMedGoogle Scholar
  156. Silver, M. J., Smith, J. B., Ingerman, C., and Kocsis, J. J., 1973, Arachidonic acid-induced human platelet aggregation and prostaglandin formation, Prostaglandins 4: 863.PubMedGoogle Scholar
  157. Skaer, R. J., Peters, P. D., and Emmines, J. P., 1974, The localization of calcium and phosphorus in human platelets, J. Celt. Soi. 15: 679.Google Scholar
  158. Smith, J. B., and Willis, A. L., 1971, Aspirin selectively inhibits prostaglandin production in human platelets, Nature (New Biol.) 231: 235.Google Scholar
  159. Smith, J. B., Ingerman, C. M., Kocsis, J. J., and Silver, M. J., 1973, Formation of prostaglandins during the aggregation of human blood platelets, J. Clin. Invest. 52: 965.Google Scholar
  160. Smith, J. B., and Macfarlane, D. E., 1974, Platelets, in “The Prostaglandins” (P. W. Ramswell, ed.), pp. 293–343, Plenum Press, New York.Google Scholar
  161. Smith, J. B., Silver, M. J., Ingerman, C. M., and Kocsis, J. J., 1974, Prostaglandin D2 inhibits the aggregation of human platelets, Thrombosis Res. 5: 291.Google Scholar
  162. Smith, J. B., Ingerman, C. M., and Silver, M. J., 1976, Malondial- dehyde formation as an indication of prostaglandin production by human platelets, J. Lab. Clin. Med. 88: 167.Google Scholar
  163. Smith, M. J. H., Walker, J. R., Ford-Hutchinson, A. W., andGoogle Scholar
  164. Penington, D. G., 1976, Platelets, prostaglandins and inflammation, Agents and Actions 6: 701.PubMedGoogle Scholar
  165. Sneddon, J. M., 1972, Divalent cations and the blood platelet release reaction, Nature (New Biol.) 236: 103.Google Scholar
  166. Solaro, R. J., Moir, A. J. G., and Perry, S. V., 1976, Phosphorylation of troponin I and the inotropic effect of adrenaline in the perfused rabbit heart, Nature 262: 615.PubMedGoogle Scholar
  167. Statland, B. E., Heagen, B. M., and White, J. G., 1969, Uptake of calcium by platelet relaxing factor, Nature 223: 521.PubMedGoogle Scholar
  168. Steiner, M., 1975, Endogenous phosphorylation of platelet membrane proteins, Arohiv. Bioohem. Biophys. 171: 245.Google Scholar
  169. Steiner, M., and Tateishi, T., 1974, Distribution and transport of calcium in human platelets, Biochim. Biophys. Acta 367: 232.Google Scholar
  170. Steinhardt, R. A., and Epel, D., 1974, Activation of sea urchin eggs by Ca++ ionophore, Proo. Nat. Acad. Sci. U. S. A. 71: 1915.Google Scholar
  171. Stuart, M., 1975, Inherited defects of platelet function, Sem. Hematol. 12: 233.Google Scholar
  172. Svensson, J., Hamberg, M., and Samuelsson, B., 1975, Prostaglandin endoperoxides. IX characterization of rabbit aorta contracting substance (RCS) from guinea pig lung and human platelets, Acta Physiol. Scand. 94: 222.Google Scholar
  173. Tada, M., Kirchberger, M. A., Repke, D. I., and Katz, A. M., 1974, The stimulation of calcium transport in cardiac sarcoplasmic reticulum by cyclic adenosine 3f:5-monophosphate-dependent kinase, J. Biol. Chem. 249: 6174.Google Scholar
  174. Takaya, K., 1975, Electron probe microanalysis of the dense bodies of human blood platelets, Arch. Histol. jap. 37: 335.Google Scholar
  175. Tateson, J. E., Moncada, S., and Vane, J. R., 1977, Effects of prostacyclin (PGX) on cyclic AT4P concentrations in human platelets, Prostaglandins 13: 389.PubMedGoogle Scholar
  176. Thorens, S., and Endo, M., 1975, Calcium-induced calcium release and “depolarization-induced” calcium release: their physiological significance, Proc. Japan Acad. 51: 473.Google Scholar
  177. Thorens, S., Schaub, M. C., and Lüscher, E. F., 1973, A calcium- sensitizing system from human platelets and its activity on muscle and platelet actomyosin, Experientia 29: 349.PubMedGoogle Scholar
  178. Vanaman, T. C., Sharief, F., Awramik, J. L., Mendel, P. A., and Watterson, D. M., 1976, Chemical and biological properties of the ubiquitous troponin-c like protein from non-muscle tissue a multifunctional Ca2+ dependent regulatory protein, in “Contractile Systems in Non-Muscle Tissues” ( S. V. Perry, A. Magreth, and R. S. Adelstein), pp. 165–176, Elsevier/North Holland Biomedical Press, New York.Google Scholar
  179. Vane, J. R., 1971, Inhibition of prostaglandin synthesis as a mechanism of action for aspirin-like drugs, Nature (New Biol.) 231: 232.Google Scholar
  180. Vargaftig, B. B., and Zirinis, P., 1973, Platelet aggregation induced by arachidonic acid is accompanied by release of potential inflammatory mediators distinct from PGE2 and PGF2a Nature (New Biol.) 244: 114.Google Scholar
  181. Vargaftig, B. B., and Dao Hai, N., 1975, Selective inhibition by mepacrine of the release of “rabbit aorta contracting substance” evoked by the administration of bradykinin, J. Pharm. Pharmacol. 24: 159.Google Scholar
  182. Vargaftig, B., 1977, Carrageenan and thrombin trigger prostaglandin synthetase-independent aggregation of rabbit platelets: inhibition by phospholipase A2 inhibitors, J. Pharm. Pharmacol. 29: 222.Google Scholar
  183. Vigdahl, R. L., Marquis, N. R., and Tavormina, P. A., 1969, Platelet aggregation: II. Adenyl cyclase, prostaglandin E]_, and calcium, Bioohem. Biophys. Res. Commun. 37: 409.Google Scholar
  184. Wallach, D. F. H., Surgenor, D. M., and Steele, B. B., 1958, Calcium- lipid complexes in human platelets, Blood 13: 589.PubMedGoogle Scholar
  185. Walsh, P. N., 1974, Platelets, blood coagulation and hemostasis, in “Platelets and Thrombosis” (S. Sherry, and A. Scriabine), pp. 23–43, University Park Press, Baltimore.Google Scholar
  186. Weber, K., 1976, Biochemical anatomy of microfilaments in cells in tissue culture using immunofluorescence microscopy, in “Contractile Systems in Non-Muscle Tissues” ( S. V. Perry, A. Margreth, and R. S. Adelstein), pp. 51–66, Elsevier/North Holland Press, New York.Google Scholar
  187. Weber, K., and Groeschel-Stewart, W., 1975, Antibody to myosin: the specific visualization of myosin-containing filaments in non-muscle cells, Proc. Nat. Acad. Sci. U. S. A. 71: 4561.Google Scholar
  188. Wells, A. W., 1972, A kinetic study of the phospolipase A2 (Crota- lus adamanteus) catalyzed hydrolysis of 1,2-dibutyryl-sn-glycero- 3-phosphorylcholine, Biochemistry 11: 1030.PubMedGoogle Scholar
  189. Wells, A. W., 1974, A phospholipase A2 model system. Calcium en-hancement of the amine-catalyzed methanolysis of phosphatidyl-choline, Biochemistry 13: 2258.Google Scholar
  190. Weiss, H., 1975, Platelet physiology and abnormalities of platelet function, New Eng. J. Med. 293: 580.Google Scholar
  191. White, J. G., 1971, Platelet morphology, in “The Circulating Plate-let” (S. A. Johnson, ed.), pp. 45–121, Academic Press, New York.Google Scholar
  192. White, J. G., 1972a, The sarcoplasmic reticulum of platelets, Fed. Proc. 31: 654.Google Scholar
  193. White, J. G., 1972b, Interaction of membrane systems in blood platelets, Amer. J. Pathol. 66: 295.Google Scholar
  194. White, J. G., and Krivit, W., 1965, Fine structural localization of adenosine triphosphatase in human platelets and other blood cells, Blood 26: 554.PubMedGoogle Scholar
  195. White, J. G., and Krivit, W., 1967, The canalicular system of blood platelets: a possible sarcoplasmic reticulum, J. Lab. Clin. Med. 49: 60.Google Scholar
  196. White, J. G., Rao, G. H. R., and Gerrard, J. M., 1974, Effect of the ionophore A23187 on blood platelets. I. Influence on aggregation and secretion, Amer. J. Pathol. 77: 135.Google Scholar
  197. Whittle, B. J. R., 1976, Calcium and inhibition of histamine release from rat peritoneal mast cells by non-steroid anti-inflammatory agents, Brit. J. Pharmacol. 58: 446P.Google Scholar
  198. Willis, A. L., Vane, F. M., Kuhn, D. C., Scott, C. G., and Petrin, M., 1974, An endoperoxide aggregator ( LASS) formed in platelets in response to thrombotic stimuli, Prostaglandins 8: 453.Google Scholar
  199. Wolfe, S., and Shulman, N. R., 1970, Inhibition of platelet energy production and release reaction by PGEi, theophylline and cAMP, Biochem. Biophys. Res. Comrnun. 41: 128.Google Scholar
  200. Wormer, P., and Brossmer, R., 1975, Platelet aggregation and the release reaction induced by ionophores for divalent cations, Thrombosis Res. 6: 295.Google Scholar
  201. Yuen, M., and Macey, R., 1974, Platelet aggregation induced by calcium ionophore, Fed. Proc. 33: 269.Google Scholar
  202. Zieve, P. D., and Greenough, W. B., III, 1969, Adenyl cyclase in human platelets: activity and responsiveness, Biochem. Biophys. Res. Comrnun. 35: 462.Google Scholar
  203. Zucker, M. B., and Peterson, J., 1970, Effect of acetylsalicylic acid, other non-steroidal anti-inflammatory agents and dipyri-damole on human blood platelets, J. Lab. Clin. Med. 76: 66.Google Scholar

Copyright information

© Plenum Press, New York 1978

Authors and Affiliations

  • Maurice B. Feinstein
    • 1
  1. 1.Department of PharmacologyUniversity of Connecticut Health CenterFarmingtonUSA

Personalised recommendations