Advertisement

Role of Calcium in the Actions of Agents Affecting Membrane Permeability

  • James W. PutneyJr.

Abstract

It has been apparent from the earliest electrophysiological measurements that extracellular Ca2+ plays a role in maintaining membrane stability and in long-term control of membrane permeability. Endogenous neurotransmitters and hormones, known to affect membrane permeability in a number of tissues, do not affect the level of extracellular Ca2+ (though surface binding may be affected), but quite often modulate the intracellular Ca2+ concentration. Thus, if Ca2+ were to play a role in alteration (rather than maintenance) of membrane permeability, then an action of intracellular Ca2+ should be evident. Recent investigations have demonstrated that this is indeed the case. The membranes of diverse cell types have been shown to respond to elevation of intracellular Ca2+ usually with an elevation in permeability to K+. In the red cell, this relationship has been demonstrated by several techniques although no endogenous receptor mechanisms capable of controlling this process under physiological conditions have been identified. Excitable cells behave similarly and (as discussed below) changes in intracellular Ca2+ may mediate receptor-dependent as well as voltage-dependent changes in K+ permeability.

Keywords

Membrane Permeability Muscarinic Receptor Parotid Gland Lacrimal Gland Exocrine Gland 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Babad, H., Ben-Zvi, R., Bdolah, A., and Schramm, M., 1967, The mechanism of enzyme secretion by the cell. 4. Effects of inducers, substrates and inhibitors on amylase secretion by rat parotid slices, Eur. J. Bioohem. 1: 96.Google Scholar
  2. Bassingthwaite, J. B., Fry, C. H., and McGuigan, J. A. S., 1976, Relationship between internal calcium and outward current in mammalian ventricular muscle; a mechanism for the control of the action potential duration? J. Physiol. ( London ) 262: 15.Google Scholar
  3. Bdolah, A., Ben-Zvi, R., and Schramm, M., 1964, The mechanism of enzyme secretion by the cell. II. Secretion of amylase and other proteins by slices of rat parotid gland, Arch. Bioohem. Biophys. 104: 58.Google Scholar
  4. Burgen, A. S. V., 1956, The secretion of potassium in saliva, J. Physiol. ( London ) 132: 20.Google Scholar
  5. Burgen, A. S. V., and Emmelin, N. G., 1961, “,Physiology of the Salivary Glands,”, Edward Arnold Ltd., London.CrossRefGoogle Scholar
  6. Butcher, F. R., 1975, The role of calcium and cyclic nucleotides in a-amylase release from slices of rat parotid: Studies with the divalent cation ionophore A-23187, Metabolism 24: 409.PubMedCrossRefGoogle Scholar
  7. Butcher, F. R., 1978, Regulation of exocytosis, in “,Biochemical Action of Hormones, Vol. 5”, (G. Litwack), Academic Press, in press.Google Scholar
  8. Butcher, F. R., McBride, P. A., and Rudich, L., 1976a, Cholinergic regulation of cyclic nucleotide levels, amylase release and K efflux from rat parotid glands, Mol. Cell. Endoorin. 5: 243.Google Scholar
  9. Butcher, F. R., Rudich, L., Emler, C., and Nemerovski, M., 1976b, Adrenergic regulation of cyclic nucleotide levels, amylase release and potassium efflux in rat parotid gland, Mol. Pharmacol. 12: 862.Google Scholar
  10. Case, R. M., 1974, The role of calcium and of cyclic AMP in pancreatic secretory processes, in “,Secretory Mechanisms of Exocrine Glands”, (N. A. Thorn and 0. H. Petersen), pp. 344–354, Munksgaard, Copenhagen.Google Scholar
  11. Douglas, W. W., and Poisner, A. M., 1963, The influence of calcium on the secretory response of the submaxillary gland to acetylcholine or to noradrenaline, J. Physiol. ( London ) 165: 528.Google Scholar
  12. Ferreira, H. G., and Lew, V. L., 1976, Use of ionophore A23187 to measure cytoplasmic Ca buffering and activation of the Ca pump by internal Ca, Nature 259: 47.PubMedCrossRefGoogle Scholar
  13. Frankenhaeuser, B., and Hodgkin, A. L., 1957, The action of calcium on the electrical properties of squid axons, J. Physiol. ( London ) 137: 218.Google Scholar
  14. Goldberg, N. D., Haddox, M. K., Nicol, S. E., Glass, D. B., Sanford, C. H., Kuehl, F. A., Jr., and Estensen, R., 1975, Biological regulation through opposing influences of cyclic GMP and cyclic AMP: The Yin Yang hypothesis, in “,Advances in Cyclic Nucleotide Research”, Vol. 5.M (G. I. Drummond, P. Greengard and G. A. Robison), pp. 307–330, Raven Press, New York.Google Scholar
  15. Hokin, M. R., 1974, Breakdown of phosphatidylinositol in the pancreas in response to pancreozymin and acetylcholine, in “,Secretory Mechanisms of Exocrine Glands”, (N. A. Thorn and 0. H. Petersen), pp. 101 - 112, Munksgaard, Copenhagen.Google Scholar
  16. Isenberg, G., 1975, Is potassium conductance of cardiac Purkinje fibres controlled by [Ca2+]i?, Nature 253: 273.CrossRefGoogle Scholar
  17. Jones, L. M., and Michell, R. H., 1976, Cholinergically stimulated phosphatidylinositol breakdown in parotid-gland fragments is independent of the ionic environment, Bioohem. J. 158: 505.Google Scholar
  18. Keryer, G., and Rossignol, B., 1976, Effect of carbachol on 45Ca uptake and protein secretion in rat lacrimal glands, Amer. J. Physiol. 230: 99.Google Scholar
  19. Krnjevic, K., and Lisiewicz, A., 1972, Injections of calcium ions into spinal motoneurones, J. Physiol. ( London ) 225: 363.Google Scholar
  20. Leslie, B. A., Putney, J. W., Jr., and Sherman, J. M., 1976, a-adrenergic, 3-adrenergic and cholinergic mechanisms for amylase secretion by rat parotid gland in vitro J. Physiol. ( London ) 260: 351.Google Scholar
  21. Lew, V. L., and Ferreira, H. G., 1976, Variable Ca sensitivity of a K-selective channel in intact red-cell membranes, Nature 263: 336.PubMedCrossRefGoogle Scholar
  22. Meech, R. W., and Standen, N. B., 1975, Potassium activation in Helix aspera neurones under voltage clamp: A component mediated by calcium influx, J. Physiol. ( London ) 249: 211.Google Scholar
  23. Michell, R. H., Jafferji, S., and Jones, L. M., 1976, Receptor occupancy dose-response curve suggests that phosphatidylinositol breakdown may be intrinsic to the mechanism of the muscarinic cholinergic receptor, FEBS Lett. 69: 1.PubMedCrossRefGoogle Scholar
  24. Miller, B. E., and Nelson, D. L., 1977, Calcium fluxes in isolated acinar cells from rat parotid: The effect of adrenergic and cholinergic stimulation, J. Biol. Chem. 252: 3629.Google Scholar
  25. Oron, Y., Lowe, M., and Selinger, Z., 1975, Incorporation of inorganic [32P] phosphate into rat parotid phosphatidylinositol. Induction through activation of alpha adrenergic and cholinergic receptors and relation to K+ release, Mol. Pharmacol. 11: 79.Google Scholar
  26. Pedersen, G. L., and Petersen, 0. H., 1973, Membrane potential measurement in parotid acinar cells, J. Physiol. ( London ) 234: 217.Google Scholar
  27. Petersen, 0. H., and Pedersen, G. L., 1974, Membrane effects mediated by alpha- and beta-adrenoceptors in mouse parotid acinar cells, J. Memb. Biol. 16: 353.Google Scholar
  28. Petersen, 0. H., Poulsen, J. H., and Thorn, N. A., 1967, Secretory potentials, secretory rate, and water permeability of the duct system in the cat submandibular gland during perfusion with calcium-free Lockes solution, Acta Physiol. Scand. 71: 203.Google Scholar
  29. Putney, J. W., Jr., 1976a, Biphasic modulation of potassium release in rat parotid gland by carbachol and phenylephrine, J. Pharmacol. Exp. Ther. 198: 375.Google Scholar
  30. Putney, J. W., Jr., 1976b, Stimulation of 45Ca influx in rat parotid gland by carbachol, J. Pharmacol. Exp. Ther. 199: 526.Google Scholar
  31. Putney, J. W., Jr., 1977, Muscarinic, a-adrenergic and peptide receptors regulate the same calcium influx sites in the parotid gland, J. Physiol. ( London ) 268: 139.Google Scholar
  32. Putney, J. W., Jr., and Askari, A., 1978, Modification of membrane function by drugs, in “,The Physiological Basis for Disorders of Biomembranes”, (T. E. Andreoli, J. F. Hoffman and D. D. Fanestil), in press, Plenum Press, New York.Google Scholar
  33. Putney, J. W., Jr., and Parod, R. J., 1978, Calcium-mediated effects of carbachol on cation pumping and Na uptake in rat parotid gland slices, J. Pharmacol. Exp. Ther. in press.Google Scholar
  34. Putney, J. W., Jr., Parod, R. J., and Marier, S. H., 1977a, Control by calcium of protein discharge and membrane permeability to potassium in the rat lacrimal gland, Life Sci. 20: 1905.PubMedCrossRefGoogle Scholar
  35. Putney, J. W., Jr., Weiss, S. J., Leslie, B. A., and Marier, S. H., 1977b, Is calcium the final mediator of exocytosis in the rat parotid gland?, J. Pharmacol. Exp. Ther. 203: 144.Google Scholar
  36. Rothman, S. S., 1975, Protein transport by the pancreas, Science 190: 747.PubMedCrossRefGoogle Scholar
  37. Rubin, R. P., 1974, “,Calcium and the Secretory Process”, Plenum Press, New York.Google Scholar
  38. Rudich, L., and Butcher, F. R., 1976, Effect of substance P and eledoisin on K+ efflux, amylase release and cyclic nucleotide levels in slices of rat parotid gland, Biochim. Biophys. Acta 444: 704.Google Scholar
  39. Schneyer, L. H., Young, J. A., and Schneyer, C. A., 1972, Salivary secretion of electrolytes, Physiol. Rev. 52: 720.Google Scholar
  40. Schramm, M., and Selinger, Z., 1974, The function of a- and adrenergic receptors and a cholinergic receptor in the secretory cell of rat parotid gland, in “,Advances in Cytopharmacology, Vol. 2”, (B. Ceccarelli, F. Clementi and J. Meldolesi), pp. 29–32, Raven Press, New York.Google Scholar
  41. Schramm, M., and Selinger, Z., 1975, The functions of cyclic AMP and calcium as alternative second messengers in parotid gland and pancreas, J. Cyclic Nucleotide Res. 1: 181.PubMedGoogle Scholar
  42. Selinger, Z., Batzri, S., Eimerl, S., and Schramm, M., 1973, Calcium and energy requirements for K+ release mediated by the epinephrine a-receptor in rat parotid slices, J. Biol. Chem. 248: 369.Google Scholar
  43. Selinger, Z., Eimerl, S., and Schramm, M., 1974, A calcium ionophore simulating the action of epinephrine on the a-adrenergic receptors, Proa. Nat. Acad. Soi. U. S. A. 71: 128.Google Scholar
  44. Simons, T. J. B., 1976a, The preparation of human red cell ghosts containing calcium buffers, J. Physiol. ( London ) 256: 209.Google Scholar
  45. Simons, T. J. B., 1976b, Calcium-dependent potassium exchange in human red cell ghosts, J. Physiol. ( London ) 256: 227.Google Scholar
  46. Weiss, G. B., 1974, Cellular pharmacology of lanthanum, Annu. Rev. Pharmacol. 14: 343.Google Scholar
  47. Williams, J. A., 1974, Intracellular control mechanisms regulating secretion by exocrine and endocrine glands, in “,Secretory Mechanisms of Exocrine Glands”, (N. A. Thorn and 0. H. Petersen), pp. 389–399, Munksgaard, Copenhagen.Google Scholar

Copyright information

© Plenum Press, New York 1978

Authors and Affiliations

  • James W. PutneyJr.
    • 1
  1. 1.Department of PharmacologyWayne State University School of MedicineDetroitUSA

Personalised recommendations