Advertisement

Prostaglandins, Calcium, and Cyclic Nucleotides in Stimulus-Response Coupling

  • Ronald P. Rubin
  • Suzanne G. Laychock

Abstract

There is now little doubt that muscle contraction and secretory activity involve fundamentally similar processes, with an increase in free Ca2+ within the cytosol providing the critical link between membrane activation by a stimulus and the specific tissue response (Rubin, 1974a; Douglas, 1975a). On the one hand, Ca2+ is instrumental in initiating muscle myofilament contraction while, on the other hand, Ca2+ facilitates the fusion of secretory granule membranes with the cell membrane of exocytotic tissues. The fact that Ca2+ is a mediator in these two basic biological processes has prompted speculation that they share a similar molecular basis involving a contractile event (Poisner, 1970; Kuo and Coffee, 1976; Trifaro and Ulpian, 1976).

Keywords

Adrenal Cortex Cyclic Nucleotide Guanylate Cyclase Adrenocortical Cell Putative Mediator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Asakawa, T., Scheinbaum, I., and Ho, R., 1976, Stimulation of guanylate cyclase by several fatty acids, Biochem. Biophys. Res. Commun. 73: 141.Google Scholar
  2. Altura, B. M., and Altura, B. T., 1976, Vascular smooth muscle and prostaglandins, Fed. Proc. 35: 2360.Google Scholar
  3. Bartels, J., Kunze, H., Vogt, W., and Wille, G., 1970, Prostaglandin: liberation from and formation in perfused frog intestine, Naunyn- Schmied. Arch. Pharmacol. 266: 199.Google Scholar
  4. Black, J. W., Duncan, W. A., Durant, C. J., Ganellin, C. R., and Parsons, E. M., 1972, Definition and antagonism of histamine H2-receptors, Nature 236: 385.PubMedCrossRefGoogle Scholar
  5. Borgeat, P., Chavancy, G., Dupont, A., Labrie, F., Arimura, A., and Schally, A. V., 1972, Stimulation of adenosine 3f:5′-cyclic monophosphate accumulation in anterior pituitary gland in vitro by synthetic luteinizing hormone-releasing hormone, Proc. Nat. Acad. Sci. U. S. A. 69: 2677.Google Scholar
  6. Brockerhoff, H., and Jensen, R. G., 1974, “Lipolytic Enzymes,” pp. 194–265, Academic Press, New York.Google Scholar
  7. Butcher, F. R., 1975, The role of calcium and cyclic nucleotides in a-amylase release from slices of rat parotid: studies with the divalent cation ionophore, Metab. 24: 409.CrossRefGoogle Scholar
  8. Carsten, M. E., 1974, Prostaglandins and oxytocin: their effects on uterine smooth muscle, Prostaglandins 5: 33.PubMedCrossRefGoogle Scholar
  9. Carsten, M. E., and Miller, J. D., 1977, Effects of prostaglandins and oxytocin on calcium release from a uterine microsomal fraction. Hypothesis for ionophoretic action of prostaglandins, J. Biol. Chem. 252: 1576.Google Scholar
  10. Christophe, J. P., Frandsen, E. K., Conlon, T. P., Krishna, G., and Gardner, J. D., 1976, Action of cholecystokinin, cholinergic agents, and A–23187 on accumulation of guanosine 3?:5f monophosphate in dispersed guinea pig pancreatic acinar cells, J. Biol. Cham. 251: 4640.Google Scholar
  11. Clegg, P. C., Hall, W. J., and Pickles, V. R., 1966, The action of ketonic prostaglandins on the guinea pig myometrium, J. Physiol. ( London ) 183: 123.Google Scholar
  12. Clyman, R. I., Blacksin, A. S., Sandler, J. A., Manganiello, V. C., and Vaughan, M., 1975, The role of calcium in regulation of cyclic nucleotide content in human umbilical artery, J. Biol. Chem. 250: 4718.Google Scholar
  13. Dalton, C., and Hope, W. C., 1974, Cyclic AMP regulation ofGoogle Scholar
  14. prostaglandin biosynthesis in fat cells, Prostaglandins 6: 227.Google Scholar
  15. Dazord, A., Morera, A. M., Bertrand, J., and Saez, J. M., 1974, Prostaglandin receptors in human and ovine adrenal glands: binding and stimulation of adenyl cyclase in subcellular preparations, Endocrinology 95: 352.PubMedCrossRefGoogle Scholar
  16. deGroat, W. C., and Lally, P. M., 1973, Interaction between picro- toxin and 5-hydroxytryptamine in the superior cervical ganglion of the cat, Brit. J. Pharmacol. 48: 233.Google Scholar
  17. Douglas, W. W., 1975a, Secretomotor control of adrenal medullary secretion: Synaptic, membrane, and ionic events in stimulus- secretion coupling, in “Handbook of Physiology,” Vol. 6, Sect. 7 (H. Blaschko, G. Sayers, and A. D. Smith), pp. 367–388, Williams and Wilkins, Baltimore.Google Scholar
  18. Douglas, W. W., 1975b, Stimulus-secretion coupling in mast cells: regulation of exocytosis by cellular and extracellular calcium, in “Calcium Transport in Contraction and Secretion” (E. Carafoli, F. Clementi, W. Drabikowski, and E. Margreth), pp. 167- 174, North-Ho11and, Amsterdam.Google Scholar
  19. Douglas, W. W., and Rubin, R. P., 1961, The role of calcium in the secretory response of the adrenal medulla to acetylcholine, J. Physiol. ( London ) 159: 40.Google Scholar
  20. Eagling, E. M., Lovell, H. G., and Pickles, V. R., 1972, Interaction of prostaglandin E and calcium in the guinea pig myometrium, Brit. J. Pharmacol. 44: 510.Google Scholar
  21. Feinstein, M. B., and Paimre, M., 1969, Pharmacological action of local anesthetics on excitation-contraction coupling in striated and smooth muscle, Fed. Proc. 28: 1643.Google Scholar
  22. Ferreira, S. H., and Vane, J. R., 1974, New aspects of the mode of action of nonsteroid antiinflammatory drugs, Annu. Rev. Pharmacol. 14: 57.Google Scholar
  23. Ferrendelli, J. A., Rubin, E. H., and Kinscherf, D. A., 1976, Influence of divalent cations on regulation of cyclic GMP and cyclic AMP levels in brain tissue, J. Neurochem. 26: 741.PubMedCrossRefGoogle Scholar
  24. Flower, R. J., 1974, Drugs which inhibit prostaglandin biosynthesis, Pharmacol. Rev. 26: 33.Google Scholar
  25. Fujimoto, M., and Okabayashi, T., 1975, Proposed mechanisms of stimulation and inhibition of guanylate cyclase with reference to the actions of chlorpromazine, phospholipases and Triton X–100, Biochem. Biophys. Res. Commun. 67: 1332.Google Scholar
  26. Glass, D. B., Gerrard, J. M., Townsend, D., Carr, D. W., White, J. G., and Goldberg, N. D., 1977, The involvement of prostaglandin endoperoxide formation in the elevation of cyclic GMP levels during platelet aggregation, J. Cyclic Nucleotide Res. 3: 37.PubMedGoogle Scholar
  27. Goldberg, N. D., OfDea, R. F., and Haddox, M. K., 1973, Cyclic GMP, in “Advances in Cyclic Nucleotide Research,” Vol. 3 ( P. Greengard and G. A. Robison), pp. 155–223, Raven Press, New York.Google Scholar
  28. Gorman, R. R., 1975, Prostaglandin endoperoxides: possible new regulators of cyclic nucleotide metabolism, J. Cyclic Nucleotide Res. 1: 1.Google Scholar
  29. Greenberg, S., Kadowitz, P. J., Diecke, F. P., and Long, J. P., 1973, Effects of prostaglandin F2a (PGF2a) on arterial and venous contractility and 5Ca uptake, Arch. Int. Pharmacodyn. Ther. 205: 381.Google Scholar
  30. Haksar, A., and Peron, F. G., 1972, Comparison of the Ca++ requirement for the steroidogenic effect of ACTH and dibutyryl cyclic AMP in rat adrenal cell suspensions, Biochem. Biophys. Res. Commun. 47: 445.Google Scholar
  31. Halkerston, I. D., 1975, Cyclic AMP and adrenocortical function, in “Advances in Cyclic Nucleotide Research,” Vol. 6 ( P. Greengard and G. A. Robison), pp. 99–136, Raven Press, New York.Google Scholar
  32. Harbon, S., Vesin, M. F., and Dokhac, L., 1975, The effects of epinephrine and prostaglandins on cAMP formation and binding to its intracellular receptors, in “Smooth Muscle Pharmacology and Physiology” (M. Worcel and G. Vassort), pp. 83–100, INSERM, Paris.Google Scholar
  33. Hardman, J. G., Beavo, J. A., Gray, J. P., Chrisman, T. D., Patterson, W. D., and Sutherland, E. W., 1971, The formation and metabolism of cyclic GMP, Ann. N. Y. Acad. Sci. 185: 27.Google Scholar
  34. Haye, B., Champion, S., and Jacquemin, C., 1976, Stimulation by TSH of prostaglandin synthesis in pig thyroid, in “Advances in Prostaglandin and Thromboxane Research” ( B. Samuelsson and R. Paoletti), pp. 29–34, Raven Press, New York.Google Scholar
  35. Hedqvist, P., 1970, Antagonism by calcium of the inhibitory action of prostaglandin E2 on sympathetic neurotransmission in the cat spleen, Acta. Physiol. Scand. 80: 269.Google Scholar
  36. Hendrickson, H. S., and van Dam-Mieras, M. C. E., 1976, Local anesthetic inhibition of pancreatic phospholipase A2 action on lecithin monolayers, J. Lipid Res. 17: 399.PubMedGoogle Scholar
  37. Horton, E. W., 1969, Hypotheses on physiological roles of prostaglandins, Physiol. Rev. 49: 122.Google Scholar
  38. Kirtland, S. J., and Baum, H., 1972, Prostaglandin may act as a calcium ionophore, Nature 236: 47.CrossRefGoogle Scholar
  39. Klaus, W., and Piccinini, F., 1967, Uber die Wirkung von Prostaglandin Ei auf den Ca-Haushalt Isolierter Meerschweinchenherzen, Experientia 23: 556.CrossRefGoogle Scholar
  40. Knapp, H. R., Oelz, 0., Roberts, L. J., Sweetman, B. J., Oates, J. A., and Reed, P. W., 1977, Ionophores stimulate prostaglandin and thromboxane biosynthesis, Proa. Nat. Acad. Sei. ¡J. S. A. 74: 4251.Google Scholar
  41. Knowles, A. F., Eytan, E., and Racker, E., 1976, Phospholipid- protein interactions in the Ca2+-adenosine triphosphatase of sarcoplasmic reticulum, J. Biol. Chem. 251: 5161.Google Scholar
  42. Kuehl, F., 1974, Prostaglandins, cyclic nucleotides and cell function, Prostaglandins 5: 325.PubMedCrossRefGoogle Scholar
  43. Kuehl, F. A., Oien, H. G., and Ham, E. A., 1974, Prostaglandins and prostaglandin synthetase inhibitors: actions on cell function, in “Prostaglandin Synthetase Inhibitors” (H. F. Robinson and J. R. Vane), pp. 53–65, Raven Press, New York.Google Scholar
  44. Kunze, H., Bohn, E., and Vogt, W., 1974, Effects of local anesthetics on prostaglandin biosynthesis in vitro, Biochim. Biophys. Acta 360: 260.Google Scholar
  45. Kunze, H., Nahas, N., Traynor, J. R., and Wurl, W., 1976, Effects of local anesthetics on phospholipases, Biochim. Biophys. Acta 441: 93.Google Scholar
  46. Kunze, H., and Vogt, W., 1971, Significance of phospholipase A for prostaglandin formation, Ann. N. Y. Acad. Sei. 180: 123.Google Scholar
  47. Kuo, I. C., and Coffee, C. J., 1976, Purification and characterization of a troponin-C-like protein from bovine adrenal medulla, J. Biol. Chem. 251: 1603.Google Scholar
  48. Laychock, S. G., Franson, R. C., Weglicki, W. B., and Rubin, R. P., 1977a, Identification and partial characterization of phospholipases in isolated adrenocortical cells: the effects of ACTH and calcium, Biochem. J. 164: 753.Google Scholar
  49. Laychock, S. G., and Rubin, R. P., 1975, ACTH-induced prostaglandin biosynthesis from 3H-arachidonic acid by adrenocortical cells, Prostaglandins 10: 529.PubMedGoogle Scholar
  50. Laychock, S. G., and Rubin, R. P., 1976, Indomethacin-induced alterations in corticosteroid and prostaglandin release by isolated adrenocortical cells of the cat, Brit. J. Pharmacol. 57: 273.Google Scholar
  51. Laychock, S. G., and Rubin, R. P., 1977, Regulation of steroidogenesis and prostaglandin formation in isolated adrenocortical cells: the effects of pregnenolone and cycloheximide, J. Steroid Biochem. 8: 663.PubMedCrossRefGoogle Scholar
  52. Laychock, S. G., Warner, W., and Rubin, R. P., 1977b, FurtherGoogle Scholar
  53. studies on the mechanisms controlling prostaglandin biosynthesis in the cat adrenal cortex: the role of calcium and cyclic AMP, Endocrinology 100: 74.Google Scholar
  54. Lefkowitz, R. J., Roth, J., and Pastan, I., 1971, ACTH-receptor interaction in the adrenal: A model for the initial step on the action of hormones that stimulate adenyl cyclase, Ann. N. Y. Acad. Soi. 185: 195.Google Scholar
  55. Malmsten, C., Granstrom, E., and Samuelsson, B., 1976, Cyclic AMP inhibits synthesis of prostaglandin endoperoxide (PGG2) in human platelets, Bioohem. Biophys. Res. Commun. 68: 569.Google Scholar
  56. Malmstrom, K., and Carafoli, E., 1975, Effects of prostaglandins on the interaction of Ca2+ with mitochondria, Arch. Bioohem. Biophys. 171: 418.Google Scholar
  57. McGiff, J. C., Malik, K. U., and Terragno, N. A., 1976, Prostaglandins as determinants of vascular reactivity, Fed. Proo. 35: 2382.Google Scholar
  58. Mcllhinney, R. A. J., and Schulster, A., 1974, Characterization of adrenocortical receptors for adrenocorticotrophin, J. Endoorinol. 61: 43.Google Scholar
  59. McMurray, W. C., and Magee, W. L., 1972, Phospholipid metabolism, Annu. Rev. Bioohem. 41: 129.Google Scholar
  60. Meissner, G., and Fleischer, S., 1972, The role of phospholipid in Ca2+-stimulated ATPase activity of sarcoplasmic reticulum, Biochim. Biophys. Aota. 255: 19.Google Scholar
  61. Miledi, R., 1973, Transmitter release induced by injection of calcium ions into nerve terminals, Proo. R. Soo. London3 Ser. B. 183: 421.CrossRefGoogle Scholar
  62. Miller, 0. V., and Gorman, R. R., 1976, Modulation of platelet cyclic nucleotide content by PGEj and the prostaglandin endoperoxide PGG2, J. Cyolio Nucleotide Res. 2: 79.Google Scholar
  63. Moyle, W. R., Kong, Y. C., and Ramachandran, J., 1973, Steroidogenesis and cyclic adenosine 351-monophosphate accumulation in rat adrenal cells. Divergent effects of adrenocorticotropin and its o-nitrophenyl sulfenyl derivative, J. Biol. Chem. 248: 2409.Google Scholar
  64. Needleman, P., 1976, The synthesis and function of prostaglandins in the heart, Fed. Proo. 35: 2376.Google Scholar
  65. Northover, B. J., 1971, Mechanism of the inhibitory action of indomethacin on smooth muscle, Brit. J. Pharmaool. 41: 540.Google Scholar
  66. Oelz, 0., Knapp, H. R., Roberts, L. J., Sweetman, B. J., Oates, J. A., and Reed, P. W., 1977, Calcium ionophores stimulate thromboxane and prostaglandin formation by platelets, Prostaglandins 13: 1013.CrossRefGoogle Scholar
  67. Papahadjopoulos, D., 1972, Studies on the mechanism of action of local anesthetics with phospholipid model membranes, Bioohim. Biophys. Aota. 265: 169.Google Scholar
  68. Podolsky, R. J., and Costantin, L. L., 1964, Regulation by calcium of the contraction and relaxation of muscle fibers, Fed. Proo. 23: 933.Google Scholar
  69. Poisner, A. M., 1970, Release of transmitters from storage: A contractile model, Adv. Bioohem. Psyohopharmaool. 2: 95.Google Scholar
  70. Ramwell, P. W., and Rabinowitz, I., 1972, Interaction of prostaglandins and cyclic AMP, in “Effects of Drugs on Cellular Control Mechanisms” (B. R. Rabin and R. B. Freedman), pp. 207–235,Google Scholar
  71. MacMillan, Baltimore.Google Scholar
  72. Ramwell, P. W., and Shaw, J. E., 1970, Biological significance of the prostaglandins, Recent Frog. Horm. Res. 26: 139.Google Scholar
  73. Rao, Ch. V., 1975, Cationic dependency of high affinity prostaglandin F2a receptors in bovine corpus luteum cell membranes, Biochem. Biophys. Res. Commun. 67: 1242.Google Scholar
  74. Rasmussen, H., and Tenenhouse, A., 1968, Cyclic adenosine monophosphate, Ca++, and membranes, Proa. Nat. Acad. Sei. U. S. A. 59: 1364.Google Scholar
  75. Repke, D. I., Spivak, J. C., and Katz, A. M., 1976, Reconstitution of an active calcium pump in sarcoplasmic reticulum, J. Biol. Chem. 251: 3169.Google Scholar
  76. Rigler, G. L., Peake, G. T., and Ratner, A., 1976, Effects of follicle-stimulating hormone and luteinizing hormone on ovarian cyclic AMP and prostaglandin E in vivo in rats treated with indomethacin, J. Endocrinol. 70: 285.PubMedCrossRefGoogle Scholar
  77. Rillema, J. A., and Wild, E. A., 1977, Prolactin activation of phospholipase A activity in membrane preparations from mammary glands, Endocrinology 100: 1219.PubMedCrossRefGoogle Scholar
  78. Robison, G. A., Butcher, R. W., and Sutherland, E. W., 1971, “Cyclic AMP,” pp. 36–47, Academic Press, New York.Google Scholar
  79. Rodan, G. A., and Feinstein, M. B., 1976, InterrelationshipsGoogle Scholar
  80. between Ca2+ and adenylate and guanylate cyclases in the control of platelet secretion and aggregation, Proc. Nat. Acad. Sei. U. S. A. 73: 1829.Google Scholar
  81. Rubin, R. P., 1974a, “Calcium and The Secretory Process,” pp. 25- 149, Plenum Press, New York.Google Scholar
  82. Rubin, R. P., 1974b, The role of calcium in drug action, in “Drug Interactions” (P. L. Morselli, S. Garattini, and S. N. Cohen), pp. 163–172, Raven Press, New York.Google Scholar
  83. Rubin, R. P., Jaanus, S. D., and Carchman, R. A., 1972, The role of calcium and adenosine cyclic 3f5f phosphate in the action of adrenocorticotrophin, Nature 240: 150.Google Scholar
  84. Rubin, R. P., Laychock, S. G., and End, D. W., 1977, On the role of cyclic AMP and cyclic GMP in steroid production by bovine cortical cells, Biochim. Biophys. Acta. 496: 329.Google Scholar
  85. Samuelsson, B., 1976, New trends in prostaglandin research, in “Advances in Prostaglandin and Thromboxane Research” ( B. Samuelsson and R. Paoletti), Vol. 1, pp. 1–6, Raven Press, New York.Google Scholar
  86. Sandow, A., 1966, Excitation-contraction coupling in skeletal muscle, Pharmacol. Rev. 17: 265.Google Scholar
  87. Scherphof, G. L., Scarpa, A., and van Toorenenbergen, A., 1972, The effect of local anesthetics on the hydrolysis of free and membrane-bound phospholipids catalyzed by various phospholipases, Biochim. Biophys. Acta. 270: 226.Google Scholar
  88. Schramm, M., and Seiinger, Z., 1975, The functions of cyclic AMP and calcium as alternative second messengers in parotid gland and pancreas, J. Cyclic Nucleotide Res. 1: 181.PubMedGoogle Scholar
  89. Schultz, G., and Hardman, J. G., 1975, Regulation of cyclic GMP levels in the ductus deferens of rats, in “Advances in Cyclic Nucleotide Research,” vol. 5 (P. Greengard and G. A. Robison), P- 339–351, Raven Press, New York.Google Scholar
  90. Seiler, D., and Hasselbach, W., 1971, Essential fatty acid deficiency and the activity of the sarcoplasmic calcium pump, Eva. J. Bioohem. 21: 385.Google Scholar
  91. Silver, M. J., and Smith, J. B., 1975, Prostaglandins as intracellular messengers, Life Sci. 16: 1635.PubMedCrossRefGoogle Scholar
  92. Smigel, M., Frohlich, J. C., and Fleischer, S., 1974, Characterization of prostaglandin E receptor in membrane and its use in the assay of prostaglandin E, in “Methods in Enzymology 32, Part B” ( S. Fleischer and L. Packer), pp. 109–123, Academic Press, New York.Google Scholar
  93. Smith, J. B., Ingerman, C. M., Kocsis, J. J., and Silver, M. J., 1974, Studies on platelet aggregation: Synthesis of prostaglandins and effects of synthetase inhibitors, in “Prostaglandin Synthetase Inhibitors” (H. J. Robinson and J. R. Vane), pp. 229–240, Raven Press, New York.Google Scholar
  94. Steiner, A. L., Peake, G. T., Utiger, R. D., Karl, I. E., and Kipnis, D. M., 1970, Hypothalamic stimulation of growth hormone and thyrotropin release in vitro and pituitary 3′51-adenosine cyclic monophosphate, Endocrinology 86: 1354.PubMedCrossRefGoogle Scholar
  95. Strong, C. G., and Bohr, D. F., 1967, Effect of prostaglandins Ej, E2, A and F2a on isolated vascular smooth muscle, J. Physiol. 213: 725.Google Scholar
  96. Trifaro, J. M., and Ulpian, C., 1976, Isolation and characterization of myosin from the adrenal medulla, Neurosoienoe 1: 483.CrossRefGoogle Scholar
  97. Van Sande, J., Decoster, C., and Dumont, J. E., 1975, Control and role of cyclic 31,5f-guanosine monophosphate in the thyroid, Bioohem. Biophys. Res. Commun. 62: 168.Google Scholar
  98. Waite, M., and Sisson, P., 1972, Effect of local anesthetics on phospholipases from mitochondria and liposomes. A probe into the role of calcium ion in phospholipid hydrolysis, Biochemistry 11: 3098.Google Scholar
  99. Wallach, D., and Pastan, I., 1976, Stimulation of guanylate cyclase of fibroblasts by free fatty acids, J. Biol. Chem. 251: 5802.Google Scholar
  100. Warner, W., and Rubin, R. P., 1975, Evidence for a possible prostaglandin link in ACTH-induced steroidogenesis, Prostaglandins 9: 83.PubMedCrossRefGoogle Scholar
  101. Will, H., Schirpke, B., and Wollenberger, A., 1976, Stimulation of Ca2+ uptake by cyclic AMP and protein kinase in sarcoplasmic reticulum-rich and sarcolemma-rich microsomal fractions from rabbit heart, Acta. Biol. Med. Germ. 35: 529.Google Scholar

Copyright information

© Plenum Press, New York 1978

Authors and Affiliations

  • Ronald P. Rubin
    • 1
    • 2
  • Suzanne G. Laychock
    • 1
    • 2
  1. 1.Departments of Pharmacology Medical College of VirginiaVirginia Commonwealth UniversityRichmondUSA
  2. 2.School of MedicineVanderbilt UniversityNashvilleUSA

Personalised recommendations