Advertisement

Effects of Calcium on Adenylate Cyclase, as Part of the Ca2+-cAMP Feedback in Biological Communication

  • Gideon A. Rodan

Abstract

Normal function of the organism depends on a continuous flow of intercellular and intracellular information, which coordinates all biological (biochemical) processes. A few common principles underlie the transfer of biological information: (1) the information is stored in the structure of macromolecules (nucleic acids, enzymes, contractile proteins and others); (2) the transfer of information is often triggered by the interaction of the macro-molecule with a small molecule; (3) if the information transfer involves energy expenditure (work), it is done at the expense of existing potential energy, such as the ion gradients across nerve membranes, and is initiated by removal of inhibition; and (4) the information transfer frequently involves amplification (multiple copies of a template, many product molecules generated by one molecule of activated enzyme, etc.).

Keywords

Adenylate Cyclase Cyclic Nucleotide Adenylate Cyclase Activity Hill Coefficient Rous Sarcoma Virus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adair, G. S., 1925, The hemoglobin system. VI. The oxygen dissociation curve of hemoglobin, J. Biol. Chem. 63: 529.Google Scholar
  2. Anderson, W. B., Johnson, G. S., and Pastan, I., 1973, Transformation of chick embryo fibroblasts by wild-type and temperature- sensitive Rous sarcoma virus alters adenylate cyclase activity, Proa. Nat. Acad. Sei. U. S. A. 70: 1055.Google Scholar
  3. Anderson, W. B., and Pastan, I., 1975, Altered adenylate cyclase activity: Its role in growth regulation and malignant transformation of fibroblases, in “Advances in Cyclic Nucleotide Research”, Vol. 5, ( G. L. Drummond, P. Greengard and G. A. Robison), pp. 681–689, Raven Press, New York.Google Scholar
  4. Andrew, C. G., Roses, A. D., Almon, R. R., and Appel, S. H., 1973, Phosphorylation of muscle membranes: identification of a membrane- bound protein kinase, Science 182: 927.PubMedGoogle Scholar
  5. Appleman, M. M., Thompson, W. J., and Russell, T. R., 1973, Cyclic nucleotide phosphodiesterase, in “Advances in Cyclic Nucleotide Research”, Vol. 3, ( P. Greengard and G. A. Robison), pp. 65–98, Raven Press, New York.Google Scholar
  6. Bader, C. R., Baumann, F., and Bertrand, D., 1976, Role of intracellular calcium and sodium in light adaptation in the retina of the honey bee drone, J. gen. Physiol. 67: 475.Google Scholar
  7. Baker, P. F., Hodgkin, A. L., and Ridgway, E. B., 1971, Depolarization and calcium entry in squid giant axons, J. Physiol. ( London ) 218: 709.Google Scholar
  8. Balk, S. D., 1971, Calcium as a regulator of the proliferation of normal but not of transformed, chicken fibroblasts in a plasma- containing medium, Proc. Nat. Acad. Sei. U. S. A. 68: 271.Google Scholar
  9. Balk, S. D., Whitfield, J. F., Youdale, T., and Braun, A. C., 1973, Roles of calcium, serum, plasma and folic acid in the control of cell proliferation of normal and Rous sarcoma virus- infected chicken fibroblasts, Proc. Nat. Acad. Sei. U. S. A. 70: 675.Google Scholar
  10. Bär, H. P., and Hechter, 0., 1969, Adenyl cyclase and hormone action I. Effects of adrenocorticotropic hormone, glucagon, and epinephrine on the plasma membrane of rat fat cells, Proc. Nat. Acad. Sei. U. S. A. 63: 350.Google Scholar
  11. Bennett, M. V. L., and Trinkaus, J. P., 1970, Electrical coupling between embryonic cells by way of extracellular space and specialized junctions, J. Cell Biol. 44: 592.PubMedGoogle Scholar
  12. Berridge, M. J., 1975, The interaction of cyclic nucleotides and calcium in the control of cellular activity, in “Advances in Cyclic Nucleotide Research”, Vol. 6, ( P. Greengard and G. A. Robison), pp. 1–98, Raven Press, New York.Google Scholar
  13. Birnbaumer, L., Pohl, S. L., and Rodbell, M., 1969, Adenyl cyclase in fat cells. I. Properties and the effects of adrenocortico- tropin and fluoride, J. Biol. Chem. 244: 3468.Google Scholar
  14. Birnbaumer, L., Pohl, S. L., and Rodbell, M., 1972, The glucagon- sensitive adenylate cyclase system in plasma membranes of rat liver, J. Biol. Chem. 247: 2038.Google Scholar
  15. Bitensky, M. W., Miki, N., Marcus, F. N., and Keirns, J. J., 1973, The role of cyclic nucleotides in visual excitation, Life Sciences 13: 1451.Google Scholar
  16. Blume, A. J., and Foster, C. J., 1976, Mouse neuroblastoma cell adenylase cyclase: Regulation by 2-chloroadenosine, prostaglandin Ej, and the cations Mg2+, Ca2+ and Mn2, J. Neurochem. 26: 305.PubMedGoogle Scholar
  17. Boeckart, J., Roy, C., and Jard, S., 1972, Oxytocin-sensitive adenylate cyclase in frog bladder epithelia cells. Role of calcium, nucleotides, and other factors in hormonal stimulation, J. Biol. Chem. 247: 7073.Google Scholar
  18. Borisy, G. G., Olmsted, J. B., Marum, J. M., and Allen, C., 1974, Microtubule assembly in vitro, Fed. Proc. 33: 167.Google Scholar
  19. Boynton, A. L., Whitfield, J. F., Isaacs, R. J., and Morton, H. J., 1974, Control of 3T3 cell proliferation by calcium, In Vitro 10: 12.Google Scholar
  20. Braun, T., 1975, The effect of divalent cations on bovine spermato- zoal adenylate cyclase activity, J. Cyclic Nucleotide Res. 1: 271.PubMedGoogle Scholar
  21. Brisson, G. R., Camu, F., Malaisse-Lagae, F., and Malaisse, W. J., 1971, Effects of a local anesthetic upon calcium uptake and insu-lin secretion by isolated isles of langerhans, Life Sciences 10: 445.Google Scholar
  22. Brooker, G., 1975, Implications of cyclic nucleotide oscillations during the myocardial contraction cycle, in “Advances in Cyclic Nucleotide Research”, Vol. 5, ( G. I. Drummond, P. Greengard and G. A. Robison), pp. 435, Raven Press, New York.Google Scholar
  23. Brostrom, M. A., Brostrom, C. A., Breckenridge, B. M., and Wolff, D. J., 1976, Regulation of adenylate cyclase from glial tumor cells by calcium and a calcium-binding protein, J. Biol. Chem. 251: 4744.Google Scholar
  24. Brown, J. E., and Blinks, J. R., 1972, Changes in [Ca2+] of Limulus ventral photoreceptors measured with aequorin, Biological Bulletin 143: 456.Google Scholar
  25. Burger, M. M., Bombik, B. M., Breckenridge, B. M., and Sheppard, J. R., 1972, Growth control and cyclic alteration of cyclic AMP in the cell cycle, Nature3 New Biol. 239: 161.Google Scholar
  26. Burk, R. R., 1968, Reduced adenyl cyclase activity in a polyoma virus transformed cell line, Nature 219: 1272.Google Scholar
  27. Burns, T. W., Langley, P. E., and Robison, G. A., 1972, Studies on the role of cyclic AMP in human lipolysis, in “Advances in Cyclic Nucleotide Research”, Vol. 1, ( P. Greengard, R. Paoletti, and G. A. Robison), pp. 63–85, Raven Press, New York.Google Scholar
  28. Campbell, B. J., Woodward, G., and Borberg, V., 1972, Calcium- mediated interactions between the antidiuretic hormone and renal plasma membranes, J. Biol. Chem. 247: 6167.Google Scholar
  29. Carchman, R. A., Johnson, G. S., Pastan, I., and Scolnick, E. M., 1974, Studies on the levels of cyclic AMP in cells transformed by wild-type and temperature-sensitive kirsten sarcoma virus, Cell 1: 59.Google Scholar
  30. Changeux, J. P., Thiery, J., Tung, Y., and Kittel, C., 1967, On the cooperativity of biological membranes, Proa. Nat. Aoad. Sci. U. S. A. 57: 335.Google Scholar
  31. Cheung, W. Y., 1970, Cyclic 3f,5f-nucoeotide phosphodiesterase; Demonstration of an activator, Biochem. Biophys. Res. Commun. 38: 533.Google Scholar
  32. Cheung, W. Y., 1971, Cyclic 3!,51-nucleotide phosphodiesterase: Evidence for and properties of a protein activator, J. Biol. Chem. 246: 2859.Google Scholar
  33. Chlapowski, F. J., Kelley, L. A., and Butcher, R. W., 1975, Cyclic nucleotides in cultured cells, in “Advances in Cyclic Nucleotide Research”, Vol. 6, ( P. Greengard, and G. A. Robison), pp. 245–338, Raven Press, New York.Google Scholar
  34. Cooper, B., Partilla, J. S., and Gregerman, R. I., 1976, Human fat cell adenylate cyclase. Enzyme characterization and guanine nucleotide effects on epinephrine responsiveness in cell membranes Biochem. Biophys. Acta 445: 246.Google Scholar
  35. Davis, B., and Lazarus, N. R., 1973, Insulin release from pancreatic islets: Properties of a membrane bound phosphokinase from cod and mouse islets, “Proceeding of 8th Congress of the International Diabetes Federation”, Exeerptev Medica ICS 280: 7.Google Scholar
  36. Dean, P. M., and Matthews, E. K., 1970a, Glucose-induced electrical activity in pancreatic islet cells, J. Physiol. ( London ) 210: 255.Google Scholar
  37. Dean, P. M., and Matthews, E. K., 1970b, Electrical activity in pancreatic islet cells: Effect of ions, J. Physiol. ( London ) 210: 265.Google Scholar
  38. deHaen, C., 1974, Adenylate cyclase. A new kinetic analysis of the effects of hormones and fluoride ion, J. Biol. Chem. 249: 2756.Google Scholar
  39. Drummond, G. I., and Duncan, L., 1970, Adenyl cyclase in cardiac tissue, J. Biol. Chem. 245: 976.Google Scholar
  40. Drummond, G. I., Severson, D. L., and Duncan, L., 1971, Adenyl cyclase. Kinetic properties and nature of fluoride and hormone stimulation, J. Biol. Chem. 246: 4166.Google Scholar
  41. Entman, M. L., Levey, G. S., and Epstein, S. E., 1969, Mechanism of action of epinephrine and glucagon on the canine heart: evidence for increase in sarcotubular calcium stores mediated by cyclic 3f, 5-AMP, Circulation 25: 429.Google Scholar
  42. Franks, D. J., Perrin, L. S., and Malamud, D., 1974, Calcium ion: A modulator of parotid adenylate cyclase activity, FEBS Lett. 42: 267.Google Scholar
  43. Friedman, D. L., 1976, Role of cyclic nucleotides in cell growth and differentiation, Physiol. Rev. 56: 652.Google Scholar
  44. Froechlich, J. E., and Rachmeler, M., 1972, Effect of adenosine 3f, 5f-cyclic monophosphate on cell proliferation, J. Cell Biol. 55: 19.Google Scholar
  45. Garbers, D. L., and Johnson, R. A., 1975, Metal and Metal-ATP interactions with brain and cardiac adenylate cyclase, J. Biol. Chem. 250: 8449.Google Scholar
  46. Gerisch, G., and Wick, U., 1975, Intracellular oscillations and release of cyclic AMP from Dictyosteliwri cells, Biochem. Biophys. Res. Commun. 65: 364.Google Scholar
  47. Glansdorf, P., and Prigogine, I., 1971, “Thermodynamics Theory of Structure Stability and Fluctuations”, Wiley Interscience, New York.Google Scholar
  48. Glossmann, H., and Gips, H., 1976, Adrenal cortex adenylate cyclase, Naunyn-Schmied. Arch. Pharmacol. 292: 199.Google Scholar
  49. Gnegy, M. E., Uzunov, P., and Costa, E., 1976, Regulation of dopamine stimulation of striatal adenylate cyclase by an endogenous Ca++ binding protein, Proa. Nat. Acad. Sci. U. S. A. 73: 3887.Google Scholar
  50. Goldbeter, A., and Caplan, S. R., 1976, Oscillatory enzymes, Annu. Rev. Biophys. Bioeng. 5: 449.Google Scholar
  51. Goldbeter, A., and Segel, L. A., 1977, Unified mechanism for relay and oscillation of cyclic AMP in Dictyostelium discoideim Proc. Eat. Acad. Sci. U. S. A. 74: 1543.Google Scholar
  52. Hadden, J. W., Hadden, E. M., Haddox, M. K., and Goldberg, N. S., 1972, Guanosine 3:5!-cyclic monophosphate: a possible intracellular mediator of mitogenic influences in lymphocytes, Proc. Nat. Acad. Sci. U. S. A. 69: 3024.Google Scholar
  53. Hadden, J. W., Hadden, E. M., Meetz, G., Good, R. A., Haddox, M. K., and Goldberg, N. D., 1973, Cyclic GMP in cholinergic and mitogenic modulation of lymphocyte metabolism and proliferation, Fed. Proc. 32: 1022.Google Scholar
  54. Hales, C. N., and Miller, R. D. G., 1968, Cations and secretion of insulin from rabbit pancreas in vitro, J. Physiol. ( London ) 199: 177.Google Scholar
  55. Hammes, G. G., and Rodbell, M., 1976, Simple model for hormone- activated adenylate cyclase systems, Proc. Nat. Acad. Sci. ¡J. S. A. 73: 1189.Google Scholar
  56. Haslam, R. J., and Lynham, J. A., 1973, Activation and inhibition of blood platelet adenylate cyclase by adenosine or by 2-chloro- adenosine, Life Sciences 11: 1143.Google Scholar
  57. Hasselbach, W., Fiehn, W., Makinose, M., and Migala, A. J., 1969, Calcium fluxes across isolated sarcoplasmic membranes in the presence and absence of ATP, in “The Molecular Basis of Membrane Function”, (D. C. Tosteson, ed.), pp. 299–316, Prentice Hall, Englewood Cliffs, New Jersey.Google Scholar
  58. Hodgkin, A. L., and Horowitz, P., 1960, Potassium contractures in single muscle fibres, J. Physiol. ( London ) 153: 386.Google Scholar
  59. Hui, C. W., Drummond, M., and Drummond, G. I., 1976, CalciumGoogle Scholar
  60. accumulation and cyclic AMP-stimulated phosphorylation in plasma membrane-enriched preparations of myocardium, Arch. Biochem. Biophys. 173: 415.Google Scholar
  61. Kakiuchi, S., and Yamazaki, R., 1970, Calcium dependent phospho-diesterase activity and its activating factor isolated from brain: Studies on cyclic 31:5f-nucleotide phosphodiesterase, Biochem. Biophys. Res. Commun. 41: 1104.Google Scholar
  62. Kirchberger, M. A., Tada, M., Repke, D. I., and Katz, A. M., 1972, Cyclic adenosine 3!,5f-monophosphate-dependent protein kinase stimulation of calcium uptake by canine cardiac microsomes, J. Mol. Cell. Cardiol. 4: 673.Google Scholar
  63. Kirchberger, M. A., and Tada, M., 1976, Effects of adenosine 3f,51-monophosphate dependent protein kinase in sarcoplasmic reticulum isolated from cardiac and slow and fast contractory skeletal muscles, J. Biol. Chem. 251: 725.Google Scholar
  64. Krishna, G., Harwood, J. P., Barber, A. J., and Jamieson, G. A., 1972, Requirement for guanosine triphosphate in the prostaglandin activation of adenylate cyclase of platelet membranes, J. Biol. Chem. 247: 2253.Google Scholar
  65. Lacy, P. E., and Malaisse, N. J., 1973, Microtubules and beta cell secretion, Recent Prog. Hormone Res. 29: 199.Google Scholar
  66. LaRaia, P. J., Zerling, L. J., and Morkin, E., 1973, Phosphoryla- tion-dephosphorylation of cardiac microsomes: A possible mechan-ism for control of calcium uptake by cyclic-AMP, Fed. Proc. 32: 346.Google Scholar
  67. Lefkowitz, R. J., Roth, J., and Pastan, I., 1970, Effects of cal-cium on ACTH stimulation of the adrenal. Separation of hormone binding from adenyl cyclase activation, Nature 228: 864.Google Scholar
  68. Letterier, J. F., Rappaport, L., and Nunez, J., 1974, Phosphorylation and aggregation and neurotubulin and associated protein kinase, Mol. Cell. Endocrinol. 1: 65.Google Scholar
  69. Loewenstein, W. R., 1973, Membrane junctions in growth and differen-tiation, Fed. Proo. 32: 60.Google Scholar
  70. Londos, C., and Preston, M. S., 1977a, Activation of the hepatic adenylate cyclase system by divalent cations: A reassessment, J. Biol. Chem. 252: 5957.Google Scholar
  71. Londos, C., and Preston, S. M., 1977b, Regulation by glucagon and divalent cations of inhibition of hepatic adenylate cyclase by adenosine, J. Biol. Chem. 252: 5951.Google Scholar
  72. Londos, C., and Rodbell, M., 1977, Adenylate cyclase: Actions and interactions of regulatory ligands, in “Drug action at the molecular level”, (G. C. K. Roberts, ed.), pp. 235–247, McMillan Press, London.Google Scholar
  73. Lowe, D. A., Richardson, B. P., Taylor, P., and Donatsch, P., 1976, Increasing intracellular sodium triggers calcium release from bound pools, Nature 260: 337.PubMedGoogle Scholar
  74. Liittgau, H. C., 1963, The action of calcium ions on potassium contractures of single muscle fibers, J. Physiol. ( London ) 168: 679.Google Scholar
  75. Malaisse-Lagae, F., and Malaisse, W. J., 1971, Stimulus-secretion coupling of glucose-induced insulin release. III. Uptake of calcium by isolated islets of Langerhans, Endocrinology 88: 72.Google Scholar
  76. Malaisse, W. J., 1973, Insulin secretion: Multifactorial regulation for a single release process, Diabetologia 9: 167.Google Scholar
  77. Moens, W. A., Vokaer, A., and Kran, R., 1975, Cyclic MP and cyclic GMP concentrations in serum- and density-restricted fibroblast cultures, Proc. Nat. Acad. Sci. U. S. A. 72: 1063.Google Scholar
  78. Montague, W., and Howell, S. L., 1972, The mode of action of 35-cyclic monophosphate in mammalian islets of Langerhans. Preparation and properties of islet cell protein phosphokinase, Bioohem. J. 129: 551.Google Scholar
  79. Montague, W., and Howell, S. L., 1975, Cyclic AMP and the physiology of the islets of Langerhans, in “Advances in Cyclic Nucleotide Research”, Vol. 6, ( P. Greengard and G. A. Robison), pp. 201–244, Raven Press, New York.Google Scholar
  80. Neer, E. J., 1976, Two soluble forms of guanosine 5f-(3,y-imino)- triphosphate and fluoride-activated adenylate cyclase, J. Biol. Chem. 251: 5831.Google Scholar
  81. Ney, R. L., Hochella, N. J., Grahame-Smith, D. G., Dexter, R. N., and Butcher, R. W., 1969, Abnormal regulation of adenosine 31,5f-monophosphate and corticosterone formation in an adrenocortical carcinoma, J. Clin. Invest. 48: 1733.Google Scholar
  82. Orly, J., and Schramm, M., 1975, Fatty acids as modulators of membrane functions: catecholamine activated adenylate cyclase of the turkey erythrocyte, Proo. Nat. Acad. Sci. U. S. A. 9: 3433.Google Scholar
  83. Otten, J., Johnson, G. S., and Pastan, I., 1971, Cyclic AMP levels in fibroblasts: Relationships to growth rate and contact inhibition of growth, Biochem. Biopkys. Res. Commun. 44: 1192.Google Scholar
  84. Otten, J., Bader, J., Johnson, G. S., and Pastan, I., 1972, A mutation in a Rous sarcoma virus gene that controls adenosine 35′-monophosphate levels and transformation, J. Biol. Chem. 247: 1632.Google Scholar
  85. Pannbacker, R. G., 1973, Control of guanylase cyclase activity in the rod outer segment, Science 182: 1138.PubMedGoogle Scholar
  86. Peck, W. A., Carpenter, J. G., and Schuster, R. J., 1976, Adenosine- mediated stimulation of bone cell adenylate cyclase activity, Endocrinology 99: 901.PubMedGoogle Scholar
  87. Perkins, J. P., 1973, Adenyl cyclase, in “Advances in Cyclic Nucleotide Research”, Vol. 3., ( P. Greengard and G. A. Robison), pp. 1–64, Raven Press, New York.Google Scholar
  88. Pfeuffer, T., and Helmreich, E. J. M., 1975, Activation of pigeon erythrocyte membrane adenylate cyclase by guanylnucleotide analogues and separation of a nucleotide binding protein, J. Biol. Chem. 250: 867.Google Scholar
  89. Pichard, A. -L., and Cheung, W. Y., 1976, Cyclic 3T:51-nucleotide phosphodiesterase: Interconvertible multiple forms and their effects on enzyme activity and kinetics, J. Biol. Chem. 251: 5726.Google Scholar
  90. Puchwein, G., Pfeuffer, T., and Helmreich, E. J. M., 1974, Uncoupling of catecholamine activation of pigeon erythrocyte membrane adenylate cyclase by filipin, J. Biol. Chem. 249: 3232.Google Scholar
  91. Queener, S. F., Fleming, J. W., and Bell, N. H., 1975, Solubilization of calcitonin-responsive renal cortical adenylate cyclase, J. Biol. Chem. 250: 7586.Google Scholar
  92. Racker, E., 1976, “A New Look at Mechanisms in Bioenergetics,” Academic Press, New York.Google Scholar
  93. Rajerison, R., Marchetti, J., Roy, C., Bockaert, J., and Jard, S., 1974, The vasopressin-sensitive adenylate cyclase of the rat kidney, J. Biol. Chem. 249: 6390.Google Scholar
  94. Rasmussen, H., 1970, Cell communication, calcium ion, and cyclic adenosine monophosphate, Science 170: 404.PubMedGoogle Scholar
  95. Rasmussen, H., Jensen, P., Lake, W., Friedmann, N., and Goodman, D. B. P., 1975, Cyclic nucleotides and cellular calcium metabolism, in “Advances in Cyclic Nucleotide Research”, Vol. 5, ( G. I. Drummond, P. Greengard and G. A. Robison), pp. 375–394, Raven Press, New York.Google Scholar
  96. Rendell, M., Salomon, Y., Lin, M., Rodbell, M., and Berman, M., 1975, The hepatic adenylate cyclase system. III. A mathematical model for the steady state kinetics of catalysis and nucleotide regulation, J. Biol. Chem. 250: 4235.Google Scholar
  97. Ridgway, E. B., Gilkey, J. C., and Jaffe, L. F., 1976, Free calcium increases explosively in activated medaka eggs, J. Cell Biol. 70: 227a.Google Scholar
  98. Rodan, G. A., and Feinstein, M. B., 1976, Interrelationships between Ca2+ and adenylate and guanylate cyclases in the control of platelet secretion and aggregation, Proc. Nat. Acad. Sci. U. S. A. 73: 1829.Google Scholar
  99. Rodan, G. A., Bourret, L. A., and Cutler, L. S., 1977, Membrane changes during cartilage maturation. Increase in 5T-nucleotidase and decrease in adenosine inhibition of adenylate cyclase, J. Cell Biol. 72: 493.PubMedGoogle Scholar
  100. Rodbell, M., Krans, H. M., Pohl, S. L., and Birnbaumer, L., 1971, The glucagon-sensitive adenyl cyclase system in plasma membranes of rat liver. III. Binding of glucagon: Method of assay and specificity, J. Biol. Chem. 246: 1861.Google Scholar
  101. Rodbell, M., 1975, On the mechanism of activation of fat cell adenylate cyclase by guanine nucleotides, J. Biol. Chem. 250: 5826.Google Scholar
  102. Rossi, C. S., and Lehninger, A. L., 1964, Stoichiometry of respiratory stimulation, accumulation of Ca++ and phosphate, and oxidative phosphorylation in rat liver mitochondria, J. Biol. Chem. 239: 3971.Google Scholar
  103. Rubin, R. P., 1970, The role of calcium in the release of neurotransmitter substances and hormones, Pharmacol. Rev. 22: 389.Google Scholar
  104. Rudland, P. S., Seeley, M., and Seifert, W., 1974, Cyclic GMP and Cyclic AMP. Levels in normal and transformed fibroblasts, Nature 251: 417.Google Scholar
  105. Russell, T. R., and Pastan, I., 1974, Cyclic adenosine 3T: 5- monophosphate phosphodiesterase activities are under separate genetic control, J. Biol. Chem. 249: 7764.Google Scholar
  106. Salomon, Y., Lin, M. C., Londos, C., Rendell, M., and Rodbell, M., 1975, The hepatic adenylate cyclase system. I. Evidence for trsnsition states and structural requirements for guanine nucleotide activation, J. Biol. Chem. 250: 4239.Google Scholar
  107. Schramm, M., 1975, The catecholamine-responsive adenylate cyclase system and its modification by 5f-guanylylimidodiphosphate, in “Advances in Cyclic Nucleotide Research”, Vol. 5, ( G. I. Drummond, P. Greengard, and G. A. Robison), pp. 105–115, Raven Press, New York.Google Scholar
  108. Schramm, M., and Rodbell, M., 1975, A persistent active state of the adenylate cyclase system produced by the combined actions of isoproterenol and guanylyl imidodiphosphate in frog erythrocyte membranes, J. Biol. Chem. 250: 2232.Google Scholar
  109. Schulze, W., Krause, E. -G., and Wollenberger, A., 1972, Cyto- chemical demonstration and localization of adenyl cyclase in skeletal and cardiac muscle, in “Advances in Cyclic Nucleotide Research”, Vol. 1, ( P. Greengard, R. Paoletti, and G. A. Robison), pp. 249–260, Raven Press, New York.Google Scholar
  110. Schulze, W., and Wollenberger, A., 1976, Zur Lokalisation der adenylatzyklase im roten und weissen skelettmuskel: Eine zytochemische Untersuchung, Acta Biol. Med. Germ. 35: 837.Google Scholar
  111. Schwabe, U., Schonhofer, P. S., and Ebert, R., 1974, Facilitation by adenosine of the action of insulin on the accumulation of adenosine 31:51-monophosphate, lipolysis, and glucose oxidation is isolated fat cells, Eur. J. Bioohem. 46: 537.Google Scholar
  112. Schwartz, A., Entman, M. L., Koniike, K., Lane, L. K., Van Winkle, B., and Bornet, E. P., 1976, The rate of calcium uptake into sarcoplasmic reticulum of cardiac and skeletal muscle: effects of cyclic AMP-dependent protein kinase and phosphorylase b kinase, Bioehim. Biophys. Acta 426: 57.Google Scholar
  113. Severson, D. L., Drummond, G. I., and Sulakhe, P. V., 1972, Adenylate cyclase in skeletal muscle, J. Biol. Chem. 247: 2949.Google Scholar
  114. Sheridan, J. D., 1966, Electrophysiological study of special connections between cells in the early chick embryo, J. Cell Biol. 31: CI.Google Scholar
  115. Spiegel, A. M., Brown, E. M., and Aurbach, G. D., 1976, Inhibition of adenylate cyclase by arsenite and cadmium: evidence for a vicinal dithiol requirement, J. Cyclic Nucleotide Res. 2: 393.PubMedGoogle Scholar
  116. Steer, M. L., and Levitzki, A., 1975, The control of adenylate cyclase by calcium in turkey erythrocyte ghosts, J. Biol. Chem. 250: 2080.Google Scholar
  117. Steinhardt, R. A., Lundin, L., and Mazia, D., 1971, Bioelectric responses of the echinoderm egg to fertilization, Proc. Nat. Acad. Sci. U. S. A. 68: 2426.Google Scholar
  118. Steinhardt, R. A., and Epel, D., 1974, Activation of sea-urchin eggs by a calcium ionophore, Proc. Nat. Acad. Sci. U. S. A. 71: 1915.Google Scholar
  119. Stole, V., 1977, Mechanism of regulation of adenylate cyclase activity in human polymorphonuclear leukocytes by calcium, guanosyl nucleotides, and positive effectors, J. Biol. Chem. 252: 1901.Google Scholar
  120. Sulakhe, P. V., and Drummond, G. I., 1974, Protein kinase-catalyzed phosphorylation of muscle sarcolemma, Arch. Biochem. Biophys. 161: 448.Google Scholar
  121. Sulakhe, P. V., Leung, N. L., and St. Louis, P. J., 1976, Stimulation of calcium accumulation in cardiac sarcolemma by protein kinase, Can. J. Bioohem. 54: 438.Google Scholar
  122. Tada, M., Kirchberger, M. A., Iorio, J. A., and Katz, A. M., 1973, Phosphorylation of a low molecular weight component (phospho- lamban) in cardiac sarcoplasmic reticulum catalyzed by a cyclic AMP-dependent protein kinase, Circulation 48: ( Suppl. IV. ): 25.Google Scholar
  123. Tada, M., Kirchberger, M. A., Repke, D. I., and Katz, A. M., 1974, The stimulation of calcium transport in cardiac sarcoplasmic reticulum by adenosine 3f, 5!-monophosphate dependent protein kinase, J. Biol. Chem. 249: 6174.Google Scholar
  124. Tada, M., Kirchberger, M. A., and Katz, A. M., 1975, Phosphorylation of a 22,000 dalton component of the cardiac sarcoplasmic reticulum by adenosine 3f,5f-monophosphate dependent protein kinase, J. Biol. Chem. 250: 2640.Google Scholar
  125. Thomas, E. W., Murad, F., Looney, W. B., and Morris, H. P., 1973, Adenosine 3!,5T-monophosphate and guanosine 3T,51-monophosphate: concentrations in Morris hepatomas of different growth rates, Bioohim. Biophys. Acta 297: 564.Google Scholar
  126. Thompson, W. J., Johnson, D. G., and Williams, R. H., 1976, Hormonal regulation of pancreatic islet adenyl cyclase, Biochemistry 15: 1658.PubMedGoogle Scholar
  127. Tolbert, M. E. M., Butcher, F. R., and Fain, J. N., 1973, Lack of correlation between catecholamine effects on cyclic adenosine 3f:5 monophosphate and gluconeogenesis in isolated rat liver cells, J. Biol. Chem. 248: 5686.Google Scholar
  128. Van Cauter, E., Hardman, J. G., and Dumont, J. E., 1976, Implications of cross inhibitory interactions of potential mediators of hormone and neurotransmitter action, Proc. Nat. Acad. Sci. U. S. A. 73: 2982.Google Scholar
  129. Wang, J. H., Teo, T. S., Ho, H. C., and Stevens, F. C., 1975, Bovine heart protein activator of cyclic nucleotide phosphodiesterase, in “Advances in Cyclic Nucleotide Research”, Vol. 5, ( G. I. Drummond, P. Greengard, and G. A. Robison), pp. 179–194, Raven Press, New York.Google Scholar
  130. Wahrman, J. P., Winand, R., and Luzzati, D., 1973, Effect of Cyclic AMP on growth and morphological differentiation of an established myogenic cell line, Nature (New Biol.) 245: 112.Google Scholar
  131. Wallach, D. F. H., 1976, Some biochemical anomalies that can con-tribute to the malignant behavior of cancer cells, J. Mo I. Med. 1: 97.Google Scholar
  132. Watterson, D. M., Harrelson, Jr., W. G., Keller, P. M., Sharief, F., and Vanaman, T. C., 1976, Structural similarities between the Ca2+ dependent regulatory proteins of 3T:5!-cyclic nucleotide phosphodiesterase and actomyosin ATPase, J. Biol. Chem. 251: 4501.Google Scholar
  133. Whitfield, J. R., MacManus, J. P., Rixon, R. H., Boynton, A. C., Youdale, T., and Swierenga, S., 1976, The positive control of cell proliferation by the interplay of calcium ions and cyclic nucleotides: A Review, In Vitro 12: 1.Google Scholar
  134. Willingham, M. C., Johnson, G. S., and Pastan, I., 1972, Control of DNA synthesis and mitosis in 3T3 cells by cyclic AMP, Bioohem. Biophys. Res. Commun. 48: 743.Google Scholar
  135. Willingham, M. C., and Pastan, I., 1975, Cyclic AMP and cell morphology in cultured fibroblasts. Effects on cell shape, microfilament and microtubule distribution, and orientation to substratum, J. Cell Biol. 67: 146.Google Scholar
  136. Winand, R. J., and Kohn, L. D., 1975, Stimulation of adenylate cyclase activity in retroorbital tissue membranes by thyrotropin and an exophthalmogenic factor derived from thyrotropin, J. Biol. Chem. 250: 6522.Google Scholar

Copyright information

© Plenum Press, New York 1978

Authors and Affiliations

  • Gideon A. Rodan
    • 1
  1. 1.Department of Oral BiologyUniversity of Connecticut School of Medicine and Dental MedicineUSA

Personalised recommendations