Surface Calcium in the Heart: Its Function and Role in Drug Action

  • Joy S. Frank


It is well documented that activation of the myofilaments in striated muscle is controlled by an increase in calcium (Ca2+) delivery to troponin sites on the myofilaments (Solaro et al., 1974; Ebashi, 1963). Calcium ions enter the cytoplasm from surface membrane sites and intracellular storage sites in response to membrane depolarization. In skeletal muscle the Ca2+ involved in the E-C coupling process is released and sequestered entirely intracellularly (Armstrong et al., 1972; Winegrad, 1970). Cellular Ca2+ exchanges in skeletal muscle at a slow rate and reacts slowly to alterations of the external Ca2+ concentration (Rich and Langer, 1975; Lüllmann et al., 1974). When a skeletal muscle is perfused with a Ca2+-free medium the decline of tension has a T1/2 of 23 min (Fig. 1). The large lateral sacs of the sarcoplasmic reticulum serve in skeletal muscle as storage and release sites for activator Ca2+ (Endo and Nakajima, 1973; Winegrad, 1968).


Sialic Acid Surface Coat Sialic Acid Residue Cell Coat Colloidal Iron 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Armstrong, C. M., Bezanilla, F. M., and Horowicz, P., 1972, Twitches in the presence of ethylene glycol bis (3-aminoethyl- ether) - N, N’-tetraacetic acid, Biochem. Biophys. Acta 267: 605.PubMedCrossRefGoogle Scholar
  2. Bennett, H. S., 1963, Morphological aspects of extracellular polysaccharides, J. Eistochem. Cytochem. 11: 14.CrossRefGoogle Scholar
  3. Cook, G. M., 1968, Glycoproteins in membranes, Biol. Rev. 43: 363.PubMedCrossRefGoogle Scholar
  4. Crevey, B. J., Langer, G. A. and Frank, J. S., 1977, Structural and functional role of Ca ion in the rabbit sarcolemma, In Press.Google Scholar
  5. Ebashi, E., 1963, Third component participating in the superpre- cipitation of “natural” actomyosin, Nature 200: 1010.PubMedCrossRefGoogle Scholar
  6. Endo, M., and Nakajima, I., 1973, Release of calcium induced by “depolarization” of the sarcoplasmic reticulum membrane, Nature (New Biol.) 246: 216.Google Scholar
  7. Fabiato, A., and Fabiato, F., 1977, Calcium release from the sarcoplasmic reticulum, Circ. Res. 40: 191.Google Scholar
  8. Fawcett, D. W., and McNutt, N. S., 1969, Ultrastructure of the cat myocardium: I. Ventricular papillary muscle, J. Cell. Biol. 42: 1.PubMedCrossRefGoogle Scholar
  9. Fleckenstein, A., 1971, Specific inhibition and promoters of calcium action in the excitation-contraction coupling of heart muscle and their role in the prevention or production of myocardial lesions, in “Calcium in the Heart” (P. Harris and L. H. Opie), pp. 135–188, Academic Press, New York.Google Scholar
  10. Frank, J. S., Langer, G. A., Nudd, L. M., and Seraydarian, K., 1977, The myocardial cell surface: Its histochemistry and the effect of sialic acid and calcium removal in its structure and cellular ionic exchange, Circ. Res. 41: November 1977.Google Scholar
  11. Gros, D., and Challice, C. E., 1975, The coating of mouse myocardial cells. A cytochemical electron microscopical study, J. Histochem. Cytochem. 23: 727.PubMedCrossRefGoogle Scholar
  12. Henkart, M., and Hagiwara, S., 1976, Localization of calcium binding sites associated with the calcium spike in barnacle muscle, J. Memb. Biol. 27: 1.CrossRefGoogle Scholar
  13. Howse, H. D., Ferrans, V. J., and Hibbs, R. G., 1970, A comparative histochemical and electron microscopic study of the surface coatings of cardiac muscle cells, J. Mol. Cell. Cardiol. 1: 157.CrossRefGoogle Scholar
  14. Ishiyama, Y., Yabu, H. and Miyazaki, E., 1975, Changes in contractility and calcium binding of guinea pig Taenia Coli by treatment with enzymes which hydrolyze sialic acid, Jpn. J. Physiol. 25: 719.PubMedCrossRefGoogle Scholar
  15. Langer, G. A., 1965, Calcium exchange in dog ventricular muscle: relation to frequency of contraction and maintenance of contractility, Circ. Res. 17: 78.PubMedGoogle Scholar
  16. Langer, G. A., 1972, Effects of digitalis in myocardial ionic exchange, Circulation 46: 180.PubMedGoogle Scholar
  17. Langer, G. A., and Frank, J. S., 1972, Lanthanum in heart cell culture: Effect on calcium exchange correlated with its localization, J. Cell Biol. 54: 441.PubMedCrossRefGoogle Scholar
  18. Langer, G. A., Frank, J. S., and Brady, A. J., 1976a, The myocardium, in “International Review of Physiology, Cardiovascular Physiology II” (A. C. Guyton and A. W. Cowley), 9: 191, University Park Press, Baltimore.Google Scholar
  19. Langer, G. A., Frank, J. S., Nudd, L. M. and Seraydarian, K., 1976b, Sialic acid: Effect of removal on calcium exchangeability of cultured heart cells, Science 193: 1013.PubMedCrossRefGoogle Scholar
  20. Lenard, J., and Singer, S. J., 1966, Protein conformation in cell membrane preparation as studied by optical rotatory dispersion and circular dichroism, Proc. Nat. Acad. Sci. U.S.A. 56: 1828.CrossRefGoogle Scholar
  21. Limas, C. J., 1977, Calcium-binding sites in rat myocardial sar- colemma, Arch. Biochem. Biophys. 179: 302.PubMedCrossRefGoogle Scholar
  22. Long, C., and Mouat, B., 1971, The binding of calcium ions by human erythrocytes, Biochem. J. 121: 15.Google Scholar
  23. Lullman, H., Preuner, J. and Sunano, S., 1974, One interaction of acetycholine, caffeine and altered Ca-concentrations upon excitation-contraction coupling in chronically denervated skeletal muscle, PflUgers Arch. 353: 279.CrossRefGoogle Scholar
  24. Martinez-Palomo, A., 1970, The surface coats of animal cells, Int. Rev. Cytol. 29: 29.CrossRefGoogle Scholar
  25. Muir, A. R., 1967, The effects of divalent cations on the ultra- structure of the perfused rat heart, J. Anat. 101: 239.PubMedGoogle Scholar
  26. Nayler, W. G., Dunnett, J., and Sullivan, A., 1976, Drug-induced changes in the superficially located stores of calcium in heart sarcolemma, in “Recent Advances in Studies on Cardiac Structure and Metabolism” “The Sarcolemma” ( P. E. Roy and N. S. Dhalla) 9: 53–70, University Park Press, Baltimore.Google Scholar
  27. Paradise, N. F., and Visscher, M. B., 1975, K+ and Mg++ net flux is in relation to zero [Ca2+] perfusion and subsequent cardiac contracture, Proc. Soc. Exp. Biol, and Med. 149: 40.Google Scholar
  28. Parsons, D. F., and Subjeck, J. R., 1972, The morphology of the polysaccaride coat of mammalian cells, Biochim. Biophys. Acta 265: 85.PubMedGoogle Scholar
  29. Repke, K., 1964, Uber den biochemischer Wirkungsmodus von Digitalis, Klin. Wochenschr. 41: 157.Google Scholar
  30. Rich, T. L., and Langer, G. A., 1975, A comparison of excitation- contraction coupling in heart and skeletal muscle: An examination of “Calcium-Induced Calcium-Release”, J. Mol. Cell. Cardiol. 7: 747.PubMedCrossRefGoogle Scholar
  31. Sanborn, W. G., and Langer, G. A., 1970, Specific uncoupling of excitation and contraction in mammalian cardiac tissue by lanthanum, J. gen. Physiol. 56: 191.PubMedCrossRefGoogle Scholar
  32. Seimiya, T., and Ohki, S., 1973, Ionic structure of phospholipid membrane and binding of calcium ions, Biochim. Biophys. Acta 298: 546.PubMedCrossRefGoogle Scholar
  33. Shine, K. I., Serena, S. D. and Langer, G. A., 1971, Kinetic localization of contractile calcium in rabbit myocardium, Amer. J. Physiol. 221: 1408.PubMedGoogle Scholar
  34. Shlatz, L., and Marinetti, G. V., 1972, Calcium binding to the rat liver plasma membrane, Biochim. Biophys. Acta 290: 70.PubMedCrossRefGoogle Scholar
  35. Singer, S. J., and Nicolson, G. L., 1972, The fluid mosaic model of the structure of cell membranes, Science 175: 720.PubMedCrossRefGoogle Scholar
  36. Solaro, R. J., Wise, R. M., Shiner, J. S., and Briggs, F. N., 1974, Calcium requirements for cardiac myofibrillar activation, Circ. Res. 34: 525.PubMedGoogle Scholar
  37. Tomlinson, C. W., Yates, J. C., and Dhalla, N. S., 1974, Relationship among changes in intracellular Ca stores, ultrastructure and contractility of myocardium, in “Recent Advances in Studies on Cardiac Structure and Metabolism” “The Sarcolemma” ( N. S. Dhalla) 4: 33, University Park Press, Baltimore.Google Scholar
  38. Weiss, G. B., and Goodman, F. R., 1969, Effects of lanthanum on contraction, calcium distribution and Ca2+ movements in intestinal smooth muscle, J. Pharmacol. Exp. Ther. 169: 46.PubMedGoogle Scholar
  39. Williamson, J. R., Woodrow, M. L., and Scarpa, A., 1975, Calcium binding to cardiac sarcolemma in “Recent Advances in Studies in Cardiac Structure and Metabolism” “Basic Functions of Cations in Myocardial Activity” (A. Fleckenstein and N. S. Dhalla) 5: 61, University Park Press, Baltimore.Google Scholar
  40. Winegrad, S., 1968, Intracellular calcium movements of frog skeletal muscle during recovery from tetanus, J. gen. Physiol. 51: 65.PubMedCrossRefGoogle Scholar
  41. Winegrad, S., 1970, The intracellular site of calcium activation of contraction in frog skeletal muscle, J. gen. Physiol. 55: 77.PubMedCrossRefGoogle Scholar
  42. Winzler, R. J., 1970, Carbohydrates in cell surfaces, Int. Rev. Cytol. 29: 77.PubMedCrossRefGoogle Scholar
  43. Yates, J. C., and Dhalla, N. S., 1975, Structural and functional changes associated with failure and recovery of hearts after perfusion with Ca++-free medium, J. Mol. Cell. Cardiol. 7: 91.PubMedCrossRefGoogle Scholar
  44. Zimmerman, A. N. E., and Husmann, W. C., 1966, Paradoxical influ-ence of calcium ions in the permeability of the cell membranes of the isolated rat heart, Nature 211: 646.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1978

Authors and Affiliations

  • Joy S. Frank
    • 1
  1. 1.Department of Physiology and Cardiovascular Research LaboratoryUCLA Center for the Health SciencesLos AngelesUSA

Personalised recommendations