Calcium, Calcium Translocation, and Specific Calcium Antagonists

  • L. Rosenberger
  • D. J. Triggle


It is now almost one hundred years since Sidney Ringer (1882) described the importance of Ca2+ in the maintenance of frog heart contractility. Subsequent to this observation, it has been increasingly recognized that Ca2+ plays a critical and central role in a multitude of biological events at both the intra-and extracellular levels (Duncan, 1976; Kretsinger, 1976a; Table 1). However, Ca2+ distribution across the cell membrane is far from equilibrium, since if the resting membrane potential (~-60mV) were equal to the Ca2+ equilibrium potential, then the intracellular Ca2+ activity should be some 100-fold greater than the extracellular activity. This is quite clearly not so and although accurate measurements of free ionized intracellular Ca2+ concentrations have not been made in many systems the concensus of evidence firmly indicates that [Ca int 2+ ] < 10-7M (Baker, 1972; 1976; Blaustein, 1974; Reuter, 1973). Such a low intracellular Ca2+ concentration accords with the binding constants of Ca2+ for those intracellular proteins whose activity is known to be modulated by Ca2+ (pKD values ~ 6–7; Kretsinger, 1976a,b) and indicates the “trigger” functipn of an increased intracellular Ca2+ concentration (Heilbrunn, 1956).


Calcium Channel Antagonist Calcium Entry Calcium Ionophore Amylase Release Squid Axon 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adams, D. J., and Gage, P. W., 1976, Gating currents associated with sodium and calcium currents in an Aplysia neuron, Science 192: 783.PubMedCrossRefGoogle Scholar
  2. Armstrong, C. M., 1975, Ionic pores, gates and gating currents, Quart. Rev. Biophys. 7: 179.CrossRefGoogle Scholar
  3. Ashby, J. P., and Speake, R. N., 1975, Insulin and glucagon secre-tion from isolated islets of Langerhans, Biochem. J. 150: 89.PubMedGoogle Scholar
  4. Baker, P. F., 1972, Transport and metabolism of calcium ions in nerve, Progr. Biophys. Mol. Biol. 24: 177.CrossRefGoogle Scholar
  5. Baker, P. F., and Glitsch, H. G., 1975, Voltage-dependent changes in the permeability of nerve membranes to calcium and other divalent cations, Phil. Trans. R. Soc. London3 Ser. B. 270: 389.CrossRefGoogle Scholar
  6. Baker, P. F., and McNaughton, P. A., 1976, Kinetics and energetics of calcium efflux from intact squid giant axons, J. Physiol. ( London ) 259: 103.PubMedGoogle Scholar
  7. Baker, P. F., Meves, H., and Ridgway, E. B., 1973, Effects of manganese and other agents on the calcium uptake that follows depolarization of squid axons, J. Physiol. ( London ) 231: 511.PubMedGoogle Scholar
  8. Bassingthwaighte, J. B., Fry, C. H., and McGuigan, J. A. S., 1976, Relationship between internal calcium and outward current in mammalian ventricular muscle: a mechanism for the control of the action potential duration, J. Physiol. ( London ) 262: 15.PubMedGoogle Scholar
  9. Bassingthwaighte, J. B., and Reuter, H., 1972, Calcium movements and excitation-contraction coupling in cardiac cells, in “Electrical Phenomena in the Heart”, (W. C. De Mello, ed.), pp. 353 - 395, Academic Press, New York.Google Scholar
  10. Baumann, K., 1976, On the action of Nifedipine under conditions of variable stimulation patterns and [Ca2+]Q m guinea-pig atrium, Naunyn-Schmied. Arch. Pharmacol. 294: 161.Google Scholar
  11. Bayer, R., Hennekes, R., Kaufmann, R., and Mannhold, R., 1975a, Inotropic and electrophysiological actions of verapamil and D-600 in mammalian myocardium. I. Pattern of inotropic effects of the racemic compounds, Naunyn-Schmied. Arch. Pharmacol. 290: 49.CrossRefGoogle Scholar
  12. Bayer, R., Kaufman, R., and Mannhold, R., 1975b, Inotropic and electrophysiological actions of verapamil and D-600 in mammalian myocardium. II. Pattern of inotropic effects of the optical isomers, Eaunyn-Schmied. Arch. Pharmacol. 290: 69.CrossRefGoogle Scholar
  13. Bayer, R., Kalusche, D., Kaufmann, R., and Mannhold, R., 1975c, Inotropic and electrophysiological actions of verapamil and D-600 in mammalian myocardium. III. Effects of the optical isomers on transmembrane action potentials, Baunyn-Schmied. Arch. Pharmacol. 290: 81.CrossRefGoogle Scholar
  14. Bennett, M. R., 1967, The effect of cations on the electrical properties of the smooth muscle cells of the guinea-pig vas deferens, J. Physiol. ( London ) 190: 465.PubMedGoogle Scholar
  15. Bilek, I., Laven, R., Peiper, U., and Regnat, K., 1974, Effect of verapamil on the response to noradrenaline or to potassium depolarization in isolated vascular strips, Microvasc. Res. 7: 181.PubMedCrossRefGoogle Scholar
  16. Blaustein, M. P., 1974, The interrelationship between sodium and calcium fluxes across cell membranes, Rev. Physiol. Biochem. Pharmacol. 70: 33.PubMedCrossRefGoogle Scholar
  17. Blaustein, M. P., and Goldman, D. E., 1968, The action of certain polyvalent cations on the voltage clamped lobster axon, J. gen. Physiol. 51: 279.PubMedCrossRefGoogle Scholar
  18. Blaustein, M. P., and Russell, J. M., 1975, Sodium-calcium exchange and calcium-calcium exchange in internally dialysed squid axons, J. Memb. Biol. 22: 285.CrossRefGoogle Scholar
  19. Blinks, J. R., Prendergast, F. G., and Allen, D. G., 1976, Photo- proteins as biological indicators, Pharmacol. Rev. 28: 1.PubMedGoogle Scholar
  20. Bottenstein, J. E., and Vellis, J. de., 1976, Divalent cation iono- phore A23187. A potent protein synthesis inhibitor, Biochem. Biophys. Res. Commun. 73: 486.PubMedCrossRefGoogle Scholar
  21. Brandt, B. L., Hagiwara, S., Kidokoro, Y., and Miyazaki, S., 1976, Action potentials in the rat chromaffin cell and effects of acetylcholine, J. Physiol. ( London ) 263: 417.PubMedGoogle Scholar
  22. Brown, R. H., 1975, Membrane surface charge: discrete and uniform modelling, Progr. Biophys. Mol. Biol. 28: 343.Google Scholar
  23. Carafoli, E., Clementi, F., Drabikowski, W., and Margreth, A. (Editors), 1975, “Calcium Transport in Contraction and Secretion”, North-Holland Publishing Company, Amsterdam.Google Scholar
  24. Carafoli, E., and Crampton, M., 1976, Calcium ions and mitochondria, in “Calcium in Biological Systems” ( C. J. Duncan), pp. 89 - 115, Symposium XXX of Society for Experimental Biology, Cambridge University Press, Cambridge.Google Scholar
  25. Chambers, E. L., Pressmen, B. C., and Rose, B., 1974, The activation of sea-urchin eggs by the divalent cation ionophores A23187 and X-537A, Biochem. Biophys. Res. Commun. 60: 126.PubMedCrossRefGoogle Scholar
  26. Cochrane, D. E., and Douglas, W. W., 1974, Calcium-induced extrusion of secretory granules (exocytosis) in mast cells exposed to 48/80 or the ionophores A-23187 and X-537A, Proc. Nat. Acad. Sei. U.S.A. 71: 408.CrossRefGoogle Scholar
  27. Cochrane, D. E., Douglas, W. W., Mouri, T., and Nakazato, Y., 1975, Calcium and stimulus-secretion coupling in the adrenal medulla: contrasting stimulating effects of the ionophores X-537A and A23187 on catecholamine output, J. Physiol. ( London ) 252: 363.PubMedGoogle Scholar
  28. Cranefield, P. F., Aronson, R. S., and Wit, A. L., 1974, Effect of verapamil on the normal action potential and on a calcium-dependent slow response of canine cardiac Purkinje fibres, Circ. Res. 34: 204.PubMedGoogle Scholar
  29. D’Arrigo, J. S., 1973, Possible screening of surface charges on crayfish axons by polyvalent metal ions, J. Physiol. ( London ) 231: 117.PubMedGoogle Scholar
  30. Desmedt, J. E., and Hainaut, K., 1976, The effect of A23187 iono- phore on calcium movements and contraction processes in single barnacle muscle fibres, J. Physiol. ( London ) 257: 87.PubMedGoogle Scholar
  31. Diamond, J. M., and Wright, E. M., 1969, Biological Membranes: the physical basis of ion and nonelectrolyte selectivity, Annu. Rev. Physiol. 31: 581.PubMedCrossRefGoogle Scholar
  32. Douglas, W. W., 1968, Stimulus-secretion coupling: the concept and clues from chromaffin cells, Brit. J. Pharmacol. 34: 451.Google Scholar
  33. Douglas, W. W., 1974, Involvement of calcium in exocytosis and the exocytosis-vesiculation sequence, Biochem. Soc. Syrnp. 39: 1.Google Scholar
  34. Dreifuss, J. J., Grau, J. D., and Nordmann, J. J., Calcium movements related to neurohypophysial hormone secretion, in “Calcium Transport in Contraction and Secretion” (E. Carafoli, F. Clementi, W. Drabikowski), pp. 271-279, North-Holland Publishing Company, Amsterdam.Google Scholar
  35. Duncan, C. J. (Editor), 1976, “Calcium in Biological Systems”,Google Scholar
  36. Symposium of The Society for Experimental Biology, XXX, Cambridge University Press, Cambridge.Google Scholar
  37. Eckert, R., and Lux, H. D., 1976, A voltage-sensitive persistent calcium conductance in neuronal somata of Helix, J. Physiol. ( London ) 254: 129.PubMedGoogle Scholar
  38. Endoh. M., Wagner, J., and Schümann, H. J., 1975, Influence of temperature on the positive inotropic effects mediated by a and 3-adrenoreceptors in the isolated rabbit papillary muscle, Naunyn- Schmied. Arch. Pharmacol. 287: 61.Google Scholar
  39. Estendsen, R. D., Reusch, M. E., Epstein, M. L. and Hill, H. R., 1976, Role of Ca2+ and Mg2+ in some human neutrophil functions as indicated by ionophore A23187, Infection and Immunity 13: 146.Google Scholar
  40. Eto, S., Wood, J., Hutchins, M., and Fleischer, N., 1974, Pituitary Ca uptake and release of ACTH, GH and TSH: effect of verapamil, Amer. J. Physiol. 226: 1315.PubMedGoogle Scholar
  41. Fatt, P., and Katz, B., 1953, The electrical properties of crustacean muscle fibres, J. Physiol. ( London ) 120: 171.PubMedGoogle Scholar
  42. Fatt, P., and Ginsborg, B. L., 1958, The ionic requirements for the production of action potentials in crustacean muscle fibres, J. Physiol. ( London ) 142: 516.PubMedGoogle Scholar
  43. Feinstein, M. B., and Fräser, C., 1975, Human platelet secretion and aggregation induced by calcium ionophores, J. gen. Physiol. 66: 561.PubMedCrossRefGoogle Scholar
  44. Fleckenstein, A., 1971, Specific inhibitors and promoters of calcium action in the excitation-contraction coupling of heart muscle and their role in the prevention or production of myocardial lesions, in “Calcium and the Heart” (P. Harris and L. H. Opie), pp. 135 - 188, Academic Press, London and New York.Google Scholar
  45. Fleckenstein, A., 1972, Physiologie und Pharmakologie der trans- membranären natrium-, kalium- und calcium-bewegunen, Arz. -Forsch. 22: 2019.Google Scholar
  46. Fleckenstein, A., 1974, Drug-induced changes in cardiac energy, Adv. Cardiol. 12: 183.PubMedGoogle Scholar
  47. Fleckenstein, A., 1976, Adalat, A powerful Ca-antagonistic drug, in “New Therapy of Ischemic Heart Disease”, (W. Lochner, ed.), pp. 56 - 65, Springer, Berlin.Google Scholar
  48. Fleckenstein, A., Tritthart, H., Döring, H.-J., and Byon, K. Y., 1972, Bayer 1040-ein hochaktiver Ca++-antagonisticher inhibitor der elektro-mechanischen koppelungsprozesse um warmblütermyokard, Arz.-Forsch. 22: 22.Google Scholar
  49. Frankenhaeuser, B., and Hodgkin, A. L., 1957, The action of calcium on the electrical properties of squid axons, J. Physiol. ( London ) 137: 218.PubMedGoogle Scholar
  50. Goldman, L., 1976, Kinetics of channel gating in excitable mem-branes, Quart. Rev. Biophys. 9: 491.CrossRefGoogle Scholar
  51. Golenhofen, K., Hermstein, N., and Lammel, E., 1973, MembraneGoogle Scholar
  52. potential and contraction of vascular smooth muscle (portal vein) during application of noradrenaline and high potassium and selec-tive inhibitory effects of iproveratril (verapamil), Microvasc. Res. 5: 73.Google Scholar
  53. Golenhofen, K., and Hermstein, N., 1975, Differentiation of calcium activation mechanisms in vascular smooth muscle by selective suppression with verapamil and D-600, Blood Vessels 12: 21.PubMedGoogle Scholar
  54. Golenhofen, K., and Weston, A. H., 1976, Differentiation of calcium activation systems in vascular smooth muscle, in “Ionic Actions on Vascular Smooth Muscle”, (E. Betz, ed.), pp. 21 - 25, Springer-Verlag, Berlin.Google Scholar
  55. Görlitz, B. D., Wagner, J., and Schümann, H., 1975, Functional antagonism between calcium-antagonists and noradrenaline in isolated guinea-pig atria, Naunyn-Schmied. Arch. Pharmacol. 238: 311.CrossRefGoogle Scholar
  56. Greene, W. C., Parker, C. M., and Parker, W. C., 1976, Calcium and lymphocyte activation, Cell Immunol. 25: 74.PubMedCrossRefGoogle Scholar
  57. Hagiwara, S., 1973, The calcium channel, Adv. Biophysics 4: 71.Google Scholar
  58. Hagiwara, S., 1975, Ca-dependent action potential, in “Dynamic Prop-erties of Lipid Membranes and Bilayers” (G. Eisenman, ed.), pp. 359 - 381, Dekker, New York.Google Scholar
  59. Hagiwara, S., and Kidokoro, Y., 1971, Na and Ca components of action potential in Amphioxus muscle cells, J. Physiol. ( London ) 219: 217.PubMedGoogle Scholar
  60. Heilbrunn, L. V., 1956, “The Dynamics of Living Protoplasm”, Academic Press, New York.Google Scholar
  61. Hille, B., 1970, Ionic channels in nerve membranes, Progr. Biophys. Mol. Biol. 21: 1.CrossRefGoogle Scholar
  62. Hart, C. A., Fisher, D., Hallinan, T., and Lucy, J. A., 1976, Effect of calcium ions and the bivalent cation ionophore A23187 on the agglutination and fusion of chicken erythrocytes by Sendai virus, Bioohem. J. 158: 141.Google Scholar
  63. Hodgkin, A. L., and Huxley, A. F., 1952, A quantitative description of membrane current and its application to conduction and excita-tion in nerve, J. Physiol. ( London ) 117: 500.PubMedGoogle Scholar
  64. Horackova, M., and Vassort, G., 1976, Calcium conductance in relation to contractility in frog myocardium, J. Physiol. ( London ) 259: 597.PubMedGoogle Scholar
  65. Hurwitz, L., Fitzpatrick, D. F., Debbas, G., and Landon, E. J., 1973, Localization of calcium pump activity in smooth muscle, Science 179: 384.PubMedCrossRefGoogle Scholar
  66. Karl, R. C., Zawalich, W. S., Ferrendelli, J. A., and Matschinsky, F. M., 1975, The role of Ca2+ and cyclic adenosine 3f-mono- phosphate in insulin release induced in vitro by the divalent cation ionophore A23187, J. Biol. Chem. 239: 4575.Google Scholar
  67. Kass, R. S., and Tsien, R. W., 1975, Multiple effects of calcium antagonists on plateau currents in cardiac Purkinje fibers, J. gen. Physiol. 66: 169.PubMedCrossRefGoogle Scholar
  68. Katzung, B. G., Reuter, H., and Porzig, H., 1973, Lanthanum inhibits Ca inward current but not Na-Ca exchange in cardiac muscle, Experientia 29: 1073.PubMedCrossRefGoogle Scholar
  69. Katz, B., and Miledi, R., 1969, Tetrodotoxin - resistant electrical activity in presynaptic terminals, J. Physiol. ( London ) 203: 459.PubMedGoogle Scholar
  70. Kaufmann, R., Bayer, R., Flirniss, T., Krause, H., and Tritthart, H., 1974, Calcium-movement controlling cardiac contractility II. Analog computation of cardiac excitation-contraction coupling on the basis of calcium kinetics in a multi-compartment model, J. Mol. Cell. Cardiol. 6: 543.PubMedCrossRefGoogle Scholar
  71. Kaumann, A. J., and Uchitel, 0., 1976, Reversible inhibition of potassium contractions by optical isomers of verapamil and D-600 on slow muscle fibers of the frog, Naunyn.-Schmied. Arch. Pharmacol. 292: 21.CrossRefGoogle Scholar
  72. Kohlhardt, M., Bauer, B., Krause, H., and Fleckenstein, A., 1972, Differentiation of the transmembrane Na and Ca channels in mammalian cardiac fibres by the use of specific inhibitors, PflUgers Arch. 335: 309.PubMedCrossRefGoogle Scholar
  73. Kohlhardt, M., Bauer, B., Krause, H., and Fleckenstein, A., 1973a, Selective inhibition of the transmembrane Ca conductivity of mammalian myocardial fibres by Ni, Co and Mn ions, Pflugers Arch. 338: 115.CrossRefGoogle Scholar
  74. Kohlhardt, M., Herdey, A., and Kubler, M., 1973b, Interchangeabi- lity of Ca ions and Sr ions as charge carriers of the slow inward current in mammalian myocardial fibres, PflUgers Arch. 344: 149.PubMedCrossRefGoogle Scholar
  75. Kohlhardt, M., Krause, H., Kubler, M., and Herdey, A., 1975,Google Scholar
  76. Kinetics of inactivation and recovery of the slow inward current mi the mammalian ventricular myocardium, Pflugers Arch. 355: 1.Google Scholar
  77. Kohlhardt, M., Kubler, M., and Herdey, A., 1974, Characteristics of the recovery process of the Ca membrane channel in myocardial fibers, Pflugers Arch. 347: R2.Google Scholar
  78. Kretsinger, R. H., 1976a, Calcium in biological systems, Coord. Chem. Rev. 18: 29.CrossRefGoogle Scholar
  79. Kretsinger, R. H., 1976b, Evolution and function of calcium-binding proteins, Int. Rev. Cytol. 56: 323.CrossRefGoogle Scholar
  80. Kuroda, T., 1976, The effects of D-600 and verapamil on action potential in X-organ neuron of the crayfish, Jpn. J. Physiol. 26: 189.PubMedCrossRefGoogle Scholar
  81. Lamb, J. F., and Lindsay, R., 1971, Effect of Na, metabolic inhi-bitors and ATP on Ca movements in L cells, J. Physiol. ( London ) 218: 691.PubMedGoogle Scholar
  82. Lehninger, A. L., 1974, Ca2+ transport by mitochondria and its possible role in the cardiac contraction-relaxation cycle, Ciro. Res. Suppl. Ill, 83.Google Scholar
  83. MacLennan, D. H., and Holland, P. C., 1975, Calcium transport in sarcoplasmic reticulum, Annu. Rev. Biophys. Bioeng. 4: 377.PubMedCrossRefGoogle Scholar
  84. Malaisse, W. J., Devis, G., Pipeleers, D. G., and Somers, G., 1976, Calcium antagonists and islet function. IV. Effect of D-600, Diabetologia 12: 77.PubMedCrossRefGoogle Scholar
  85. Mandrek, K., and Golenhofen, K., 1976, Activation of gastrointestinal smooth muscle induced by the calcium ionophore A23187, in “Smooth Muscle Pharmacology and Physiology” (M. Worcel and G. Vassort), pp. 343 - 352, Inserm, Paris.Google Scholar
  86. McLaughlin, S., and Eisenberg, M., 1975, Antibiotics and membrane biology, Annu. Rev. Biophys. Bioeng. 4: 335.PubMedCrossRefGoogle Scholar
  87. McLaughlin, S. G. A., Szabo, G., and Eisenman, G., 1971, Divalent ions and the surface potential of charged phospholipid membranes, J. gen. Physiol. 58: 667.PubMedCrossRefGoogle Scholar
  88. Meech, R. W., 1972, Intracellular calcium injection causes in-creased potassium conductance in Aplysia nerve cells, Comp. Bioohem. Physiol. 42A: 493.CrossRefGoogle Scholar
  89. Meech, R. W., and Standen, N. B., 1975, Potassium activation in Helix aspersa neurones under voltage clamp: a component mediated by calcium influx, J. Physiol. ( London ) 249: 211.PubMedGoogle Scholar
  90. Mikkelsen, R. B., 1976, Lanthanides as calcium probes in biomem- branes, in “Biological Membranes”, Vol. 3 (D. Chapman and D. F. H. Wallach), pp. 153 - 190, Academic Press, New York.Google Scholar
  91. Murray, J. W., Reed, P. W., and Fay, F. S., 1975, Contraction of isolated smooth muscle cells by ionophore A23187, Proo. Nat. Acad. Sci. U.S.A. 72: 4459.CrossRefGoogle Scholar
  92. Naitoh, Y., Eckert, R., and Friedman, K., 1972, A regenerative calcium response in Paramecium, J. Exp. Biol. 56: 667.PubMedGoogle Scholar
  93. Nakamura, Y., and Schwartz, A., 1971, Adenosine triphosphate- dependent calcium-binding vesicles: magnesium, calcium, adenosine triphosphatase and sodium-potassium adenosine triphosphatase distributions in dog brain, Arch. Biochem. Biophys. 144: 16.CrossRefGoogle Scholar
  94. Nawrath, H., Ten Eick, R. E., McDonald, T. F., and Trautwein, W., 1977, On the mechanism underlying the action of D-600 on slow inward current and tension in mammalian myocardium, Circ. Res. 40: 408.PubMedGoogle Scholar
  95. Nieboer, E., 1975, The lanthanide ions as structural probes in biological and model systems, Structure and Bonding 22: 1.CrossRefGoogle Scholar
  96. Ochi, R., 1976, Manganese-dependent propagated action potentials and their depression by electrical stimulation in guinea-pig myocardium perfused by sodium-free media, J. Physiol. ( London ) 263: 139.PubMedGoogle Scholar
  97. Okamota, A., Takahashi, K., and Yoshii, M., Two components of the calcium current in the egg cell membrane of the tunicate, J. Physiol. (London) 225: 527.Google Scholar
  98. Peiper, U., Griebel, L., and Wende, W., 1971, Activation of vascular smooth muscle of rat aorta by noradrenaline and depolarization: two different mechanisms, Pflugers Arch. 330: 74.PubMedCrossRefGoogle Scholar
  99. Pfeiffer, D. R., and Lardy, H. A., 1976, Ionophore A23187: the effect of H+ concentration on complex formation with divalent and monovalent cations and the demonstration of K+ transport in mitochondria mediated by A23187, Biochemistry 15: 935.PubMedCrossRefGoogle Scholar
  100. Pfeiffer, D. R., Reed, P. W., and Lardy, H. A., 1974, Ultraviolet and fluorescent spectral properties of the divalent cation ionophore A23187 and its metal ion complexes, Biochemistry 13: 4007.PubMedCrossRefGoogle Scholar
  101. Pinto, J. E. B., and Trifaro, J. M., 1976, The different effects of D-600 (methoxy verapamil) on the release of catecholamines induced by acetylcholine, high potassium or sodium deprivation, Brit. J. Pharmacol. 57: 127.Google Scholar
  102. Poste, G., and Nicolson, G. L., 1976, Calcium ionophores A23187 and X-537A affect cell agglutination by lectins and capping of lymphocyte surface immunoglobulins, Biochim. Biophys. Acta. 426: 148.PubMedCrossRefGoogle Scholar
  103. Poulsen, J. H., and Williams, J. A., 1977, Effects of the calcium ionophore A23187 on pancreatic acinar cell membrane potential and amylase release, J. Physiol. ( London ) 264: 323.PubMedGoogle Scholar
  104. Pressman, B. C., 1976, Biological applications of ionophores, Annu. Rev. Biochem. 45: 501.PubMedCrossRefGoogle Scholar
  105. Reed, P. W., 1976, Effects of the divalent cation ionophore A23187 on potassium permeability of rat erythrocytes, J. Biol. Chem. 251: 3489.PubMedGoogle Scholar
  106. Reed, P. W., and Lardy, H. A., 1972, A23187: a divalent cation ionophore, J. Biol. Chem. 247: 6970.PubMedGoogle Scholar
  107. Reimer, J., Dorfler, F., Mayer, C.-J., and Ulbrecht, G., 1974, Calcium-antagonistic effects on the spontaneous activity of guinea-pig taenia coli, Pflugers Arch. 351: 241.CrossRefGoogle Scholar
  108. Reiner, 0., and Marshall, J. M., 1975, Action of D-600 on spontaneous and electrically stimulated activity of the parturient rat uterus, Naunyn-Schmied. Arch. Pharmacol. 290: 21.CrossRefGoogle Scholar
  109. Reuter, H., 1973, Divalent cations as charge carriers in excitable membranes, Progr. Biophys. Mol. Biol. 26: 1.CrossRefGoogle Scholar
  110. Reuter, H., 1974, Localization of beta-adrenergic receptors and effects of noradrenaline and cyclic nucleotides on action potentials, ionic currents and tension in mammalian cardiac muscle, J. Physiol. ( London ) 264: 17.Google Scholar
  111. Reuter, H., 1977, The regulation of the calcium conductance of cardiac muscle by adrenaline, J. Physiol. ( London ) 264: 49.PubMedGoogle Scholar
  112. Reuter, H., and Scholz, H., 1977, A study of the ion selectivity and the kinetic properties of the calcium dependent slow inward current in mammalian cardiac muscle, J. Physiol. ( London ) 264: 17.PubMedGoogle Scholar
  113. Ringer, S., 1883, A further contribution regarding the influence of the different constituents of the blood on the contraction of the heart, J. Physiol. ( London ) 4: 29.Google Scholar
  114. Ritchie, J. M., Rogart, R. B., and Strichartz, G. R., 1976, A new method for labelling saxitoxin and its binding to non-myelinated fibres of the rabbit vagus, lobster walking leg, and garfish olfactory nerves, J. Physiol. ( London ) 261: 477.PubMedGoogle Scholar
  115. Rojas, E., and Luxoro, M., 1974, Coupling between ionic conductance changes and contractions in barnacle muscle fibres under membrane potential control, in “Actualities Neurophysiologiques”, (A. M. Monnier, ed.), pp. 159 - 169, Masson, Paris.Google Scholar
  116. Russell, J. T., and Thorn, N. A., 1974, Calcium and stimulus-secretion coupling in the neurohypophysis, Acta Endocrin. 76: 471.Google Scholar
  117. Scarpa, A., Baldassare, J., and Inesi, G., 1972, The effect of calcium ionophores on fragmented sarcoplasmic reticulum, J. gen. Physiol. 60: 735.PubMedCrossRefGoogle Scholar
  118. Schatzmann, H. J., 1975, Active calcium transport and Ca2+-activated ATPase in human red cells, Current Topics in Membranes and Transport 6: 125.CrossRefGoogle Scholar
  119. Schmidt, J. A., and Eckert, R., 1976, Calcium couples flagellar reversal to photostimulation in Chlamydomonas reinhardti, Nature 262: 713.PubMedCrossRefGoogle Scholar
  120. Schroeder, T. E., and Strickland, D. L., 1974, Ionophore A23187, calcium and contractility in frog eggs, Exp. Cell. Res. 83: 139.PubMedCrossRefGoogle Scholar
  121. Simon, W., Morf, W. E., and Meier, P. Ch., 1975, Specificity for alkali and alkaline earth cations of synthetic and natural organic complexing agents in membranes, Structure and Bonding 16: 113.CrossRefGoogle Scholar
  122. Somers, G., Devis, G., Van Obberghen, E., and Malaisse, W. J., 1976, Calcium antagonists and islet function. VI. Effect of barium, Pflugers Arch. 365: 21.PubMedCrossRefGoogle Scholar
  123. Standen, N. B., 1975, Calcium and sodium ions as charge carriers in the action potential of an identified snail neurone, J. Physiol. ( London ) 249: 241.PubMedGoogle Scholar
  124. Steinhardt, R. A., Epel, D., and Carrol, E. J., 1974, Is calcium ionophore a universal activator for unfertilized eggs, Nature 252: 41.PubMedCrossRefGoogle Scholar
  125. Stinnakre, J., and Tauc, L., 1973, Calcium influx in active Aplysia neurones detected by injected aequorin, Nature 242: 113.CrossRefGoogle Scholar
  126. Swamy, V. C., Ticku, M. K., Triggle, C. R., and Triggle, D. J., 1975, The action of the ionophores, X-537A and A23187, on smooth muscle, Can. J. Physiol. Pharmacol. 53: 1108.PubMedCrossRefGoogle Scholar
  127. Thorn, N. A., Russell, J. T., and Robinson, I. C. A. F., 1975, Factors affecting intracellular concentration of free calcium ions in neurosecretory nerve endings, in “Calcium Transport in Contraction and Secretion”, ( E. Carafoli, F. Clementi, W. Drabikowski, and A. Margreth), pp. 261 - 269, North-Holland Publishing Company, Amsterdam.Google Scholar
  128. Tomita, T., 1970, Electrical properties of mammalian smooth muscle, in “Smooth Muscle”, (E. BUlbring, A. F. Brading, A. W. Jones, and T. Tomita), Williams and Wilkins, Baltimore, Md.Google Scholar
  129. Triggle, D. J., 1972, Effect of calcium on excitable membranes and neurotransmitter action, Progr. Surface and Merrib. Sci. 5: 267.Google Scholar
  130. Triggle, D. J., and Triggle, C. R., 1976, “Chemical Pharmacology of the Synapse”, Chapter I V, Academic Press, London and New York.Google Scholar
  131. Triggle, C. R., Grant, W. F., and Triggle, D. J., 1975, Intestinal smooth muscle contraction and the effects of cadmium and A23187, J. Pharmacol. Exp. Ther. 194: 182.PubMedGoogle Scholar
  132. Tritthart, H., Volkmann, R., Weiss, R., and Fleckenstein, A., 1973, Calcium-mediated action potentials in mammalian myocardium, Naunyn-Schmied. Arch. Pharmacol. 280: 239.CrossRefGoogle Scholar
  133. Tsien, R. W., 1974, Mode of action of chronotropic agents in cardiac Purkinje fibers, J. gen. Physiol. 64: 320.PubMedCrossRefGoogle Scholar
  134. Werman, R., and Grundfest, H., 1961, Graded and all-or-none electro- genesis in arthropod muscle II. The effects of alkali-earth and onium ions on lobster muscle fibers, J. gen. Physiol. 44: 997.PubMedCrossRefGoogle Scholar
  135. Williams, R. J. P., 1970, The biochemistry of sodium, potassium, magnesium and calcium, Quart. Revs. Chem. Soc. 24: 331.CrossRefGoogle Scholar
  136. Zahlten, R. N., Stratman, F. W., and Lardy, H. A. 1973, Regulation of glucose synthesis in hormone-sensitive isolated rat hepato- cytes, Proc. Nat. Acad. Sci. U.S.A. 70: 3213.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1978

Authors and Affiliations

  • L. Rosenberger
    • 1
  • D. J. Triggle
    • 1
  1. 1.Department of Biochemical PharmacologyState University of New YorkBuffaloUSA

Personalised recommendations